Journal of Bionic Engineering

, Volume 5, Issue 4, pp 358–365 | Cite as

Biomimetic Cilia Based on MEMS Technology

  • Zhi-guo ZhouEmail author
  • Zhi-wen Liu


A review on the research of Micro Electromechanical Systems (MEMS) technology based biomimetic cilia is presented. Biomimetic cilia, enabled by the advancement of MEMS technology, have been under dynamic development for the past decade. After a brief description of the background of cilia and MEMS technology, different biomimetic cilia applications are reviewed. Biomimetic cilia micro-actuators, including micromachined polyimide bimorph biomimetic cilia micro-actuator, electro-statically actuated polymer biomimetic cilia micro-actuator, and magnetically actuated nanorod array biomimetic cilia micro-actuator, are presented. Subsequently micromachined underwater flow biomimetic cilia micro-sensor is studied, followed by acoustic flow micro-sensor. The fabrication of these MEMS-based biomimetic cilia devices, characterization of their physical properties, and the results of their application experiments are discussed.


biomimetic cilia MEMS micro-actuator micro-sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Charles Daghlian. Scanning electron microscope image of lung trachea epithelium, [2001-04-06],
  2. [2]
    Hudspeth A J, Jacobs R. Stereocilia mediate transduction in vertebrate hair cells. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 1506–1509.CrossRefGoogle Scholar
  3. [3]
    Hsu Tai-ran. MEMS and Microsystems: Design and Manufacture, McGraw-Hill, Boston, 2002.Google Scholar
  4. [4]
    Suh J W, Glander S F, Darling R B, Storment C W, Kovacs G T. Organic thermal and electrostatic ciliary micro-actuator array for object manipulation. Sensors and Actuators A, 1996, 58, 51–60.CrossRefGoogle Scholar
  5. [5]
    Böhringer K F, Donald B R, MacDonald N C, Kovacs G T, Suh J W. Computational methods for design and control of MEMS micromanipulator arrays. IEEE Computational Science and Engineering, 1997, 4, 17–29.CrossRefGoogle Scholar
  6. [6]
    Suh J W, Darling R B, Böhringer K F, Donald B R, Baltes H, Kovacs G T A. CMOS integrated organic ciliary array as a general-purpose micromanipulation tool for small objects. Journal of Microelectromechanical Systems, 1999, 8, 483–496.CrossRefGoogle Scholar
  7. [7]
    Terry M, Reiter J M, Böhringer K F, Suh J W, Kovacs G T. A docking system for microsatellites based on MEMS actuator arrays. IOP Journal of Smart Materials and Structures, 2001, 10, 1176–1184.CrossRefGoogle Scholar
  8. [8]
    Chen Y M, Suh J W, Kovacs G T, Darling R B, Böhringer K F. Modeling and control of a 3-Degree-of-Freedom walking microrobot. Hilton Head 2006: A Solid State Sensor, Actuator, and Microsystems Workshop, Hilton Head Island, NC, 2006.Google Scholar
  9. [9]
    Toonder J M J den, Bos F M, Broer D J, Filippini L, Gillies M, Goede J de, Mol T, Reijme M A, Talen W, Wilderbeek H, Khatavkar V, Anderson P D. Artificial cilia for active microfluidic mixing. Lab on a Chip, 2008, 8, 533–541.CrossRefGoogle Scholar
  10. [10]
    Evans B A, Shields A R, Carroll R L, Washburn S, Falvo M R, Superfine R. Magnetically actuated nanorod arrays as biomimetic cilia. Nano Letters, 2007, 7, 1428–1434.CrossRefGoogle Scholar
  11. [11]
    Fan Z F, Chen J, Zou J, Bullen D, Liu C, Delcomyn F. Design and fabrication of artificial lateral line flow sensors. Journal of Micromechanics and Microengineering, 2002, 12, 655–661.CrossRefGoogle Scholar
  12. [12]
    Krijnen G J M. MEMS based hair flow-sensors as model systems for acoustic perception studies. Nanotechnology, 2006, 17, 84–89.CrossRefGoogle Scholar
  13. [13]
    Bee A, Massart R, Neveu S. Synthesis of very fine maghemite particles. Journal of Magnetism and Magnetic Materials, 1995, 149, 6–9.CrossRefGoogle Scholar
  14. [14]
    Brumlik C J, Menon V P, Martin C R. Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. Journal of Materials Research, 1994, 9, 1174–1183.CrossRefGoogle Scholar
  15. [15]
    Cebers A. Flexible magnetic filaments. Current Opinion in Colloid & Interface Science, 2005, 10, 167–175.CrossRefGoogle Scholar
  16. [16]
    Chik H, Xu J M. Nanometric superlattices: Non-lithographic fabrication, materials, and prospects. Materials Science and Engineering R-Reports, 2004, 43, 103–138.CrossRefGoogle Scholar
  17. [17]
    Engel J M, Chen J, Liu C, Bullen D. Polyurethane rubber all-polymer artificial hair cell sensor. Journal of Microelectromechanical Systems, 2006, 15, 729–736.CrossRefGoogle Scholar
  18. [18]
    Fan J G, Tang X J, Zhao Y P. Water contact angles of vertically aligned Si nanorod arrays. Nanotechnology, 2004, 15, 501–504.CrossRefGoogle Scholar
  19. [19]
    Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B. Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 2002, 14, 1857–1860.CrossRefGoogle Scholar
  20. [20]
    Tabata O, Hirasawa H, Aoki S, Yoshida R, Kokufuta E. Ciliary motion actuator using self-oscillating gel. Sensors and Actuators A-Physical, 2002, 95, 234–238.CrossRefGoogle Scholar
  21. [21]
    Parducz B. Ciliary movement and coordination in ciliates. International Reviews of Cytology, 1967, 21, 91–128.CrossRefGoogle Scholar
  22. [22]
    Bond C E, Biology of Fishes, 2nd ed, Saunders College Publishing, Philadelphia, USA, 1996.Google Scholar
  23. [23]
    Pandya S, Yang Y, Jones D L, Engel J, Liu C. Multisensor processing algorithms for underwater dipole localization and tracking using MEMS artificial lateral-line sensors. EURASIP Journal on Applied Signal Processing, 2006, 2006, 1110–8657.Google Scholar
  24. [24]
    Zou J, Chen J, Liu C, Schutt-Aine J E. Plastic deformation magnetic assembly (PDMA) of out-of-planemicrostructures: Technology and application. Journal of Microelectromechanical Systems, 2001, 10, 302–309.CrossRefGoogle Scholar
  25. [25]
    Sharp K G, Blackman G S, Glassmaker N J, Jagota A, Hui C Y. Effect of stamp deformation on the quality of microcontact printing: Theory and experiment. Langmuir, 2004, 20, 6430–6438.CrossRefGoogle Scholar
  26. [26]
    Kim C J, Kim J Y, Sridharan B. Comparative evaluation of drying techniques for surface micromachining. Sensors and Actuators A: Physical, 1998, 64, 17–26.CrossRefGoogle Scholar

Copyright information

© Jilin University 2008

Authors and Affiliations

  1. 1.Department of Electronic EngineeringBeijing Institute of TechnologyBeijingP. R. China

Personalised recommendations