Journal of Bionic Engineering

, Volume 5, Supplement 1, pp 148–151 | Cite as

Subaquatic Fly Locomotion — Principles

  • Dan Zhu
  • Andrei P. SommerEmail author
  • Hans-Joerg Fecht


The theoretical criteria essential for underwater superhydrophobicity follow from the analysis on the conditions of heterogeneous wetting. Such surfaces, when immersed in water are not wetted — a layer of air is trapped between them and the surrounding water. Here we provide an observational evidence that house flies can survive under water by exploiting underwater superhydrophobicity in association with underwater adhesion. The adhesion — resisting updraft — is probably mediated by a glue-like interfacial water layer formed on the top of the pathogens collected on the terminal setae.


subaquatic fly locomotion superhydrophobicity biomimetic ultrastructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Marmur A. Underwater superhydrophobicity: Theoretical feasibility. Langmuir, 2006, 22, 1400–1402.CrossRefGoogle Scholar
  2. [2]
    Ashley S. Warp drive underwater. Scientific American, 2001, 284, 70–79.CrossRefGoogle Scholar
  3. [3]
    Sommer A P, Zhu D, Wiora M, Fecht H J. The top of the biomimetic triangle. Journal of Bionic Engineering, 2008, 5, 91–94.CrossRefGoogle Scholar
  4. [4]
    Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir, 2004, 20, 3517–3519.CrossRefGoogle Scholar
  5. [5]
    Marmur A. Super-hydrophobicity fundamentals: Implications to biofouling prevention. Biofouling, 2006, 22, 107–115.CrossRefGoogle Scholar
  6. [6]
    Gao X, Jiang L. Biophysics: Water-repellent legs of water striders. Nature, 2004, 432, 36.CrossRefGoogle Scholar
  7. [7]
    Feng X Q, Gao X, Wu Z, Jiang L, Zheng Q S. Superior water repellency of water strider legs with hierarchical structures: Experiments and analysis. Langmuir, 2007, 23, 4892–4896.CrossRefGoogle Scholar
  8. [8]
    Lee D G, Kim H Y. Impact of a superhydrophobic sphere onto water. Langmuir, 2008, 24, 142–145.CrossRefGoogle Scholar
  9. [9]
    Mitchinson A. Surface chemistry: Repellent legs. Nature, 2007, 445, 373.CrossRefGoogle Scholar
  10. [10]
    Szent-Györgyi A. Biology and pathology of water. Perspectives in Biology and Medicine, 1971, 14, 239–249.CrossRefGoogle Scholar
  11. [11]
    Sommer A P, Franke R P. Modulating the profile of nanoscopic water films with low level laser light. Nano Letters, 2003, 3, 19–20.CrossRefGoogle Scholar
  12. [12]
    Jinesh K B, Frenken J W M. Capillary condensation in atomic scale friction: How water acts like a glue. Physical Review Letters, 2006, 96, 166103.CrossRefGoogle Scholar
  13. [13]
    Goertz M P, Houston J E, Zhu X Y. Hydrophilicity and the viscosity of interfacial water. Langmuir, 2007, 23, 5491–5497.CrossRefGoogle Scholar
  14. [14]
    Li T D, Gao J, Szoszkiewicz R, Landman U, Riedo E. Structured and viscous water in subnanometer gaps. Physical Review B, 2007, 75, 115415.CrossRefGoogle Scholar
  15. [15]
    Sommer A P, Pavláth A E. The subaquatic water layer. Crystal Growth & Design, 2007, 7, 18–24.CrossRefGoogle Scholar
  16. [16]
    Sommer A P, Caron A, Fecht H J. Tuning nanoscopic water layers on hydrophobic and hydrophilic surfaces with laser light. Langmuir, 2008, 24, 635–636.CrossRefGoogle Scholar
  17. [17]
    Parker A R, Lawrence C R. Water capture by a desert beetle. Nature, 2001, 414, 33–34.CrossRefGoogle Scholar
  18. [18]
    Dickinson M. Animal locomotion: How to walk on water. Nature, 2003, 424, 621–622.CrossRefGoogle Scholar
  19. [19]
    Sukontason K L, Bunchu N, Methanitikorn R, Chaiwong T, Kuntalue B, Sukontason K. Ultrastructure of adhesive device in fly in families calliphoridae, muscidae and sarcophagidae, and their implication as mechanical carriers of pathogens. Parasitolology Research, 2006, 98, 477–481.CrossRefGoogle Scholar
  20. [20]
    Gorb S N. The design of the fly adhesive pad: Distal tenent setae are adapted to the delivery of an adhesive secretion. Proceedings: Biological Sciences, 1998, 265, 747–752.Google Scholar
  21. [21]
    Kobayashi M, Sasaki T, Saito N, Tamura K, Suzuki K, Watanabe H, Agui N. Houseflies: Not simple mechanical vectors of enterohemorrhagic Escherichia coli O157:H7. The American Journal of Tropical Medicine and Hygiene, 1999, 61, 625–629.CrossRefGoogle Scholar
  22. [22]
    Levine O S, Levine M M. Houseflies (Musca domestica) as mechanical vectors of shigellosis. Reviews of Infectious Diseases, 1991, 13, 688–696.CrossRefGoogle Scholar
  23. [23]
    Sommer A P, Zhu D, Jaeger B. Other side of climate change: Nanoparticle emission. Energy and Fuels, 2008, 22, 2869–2870.CrossRefGoogle Scholar
  24. [24]
    Taubes, G. Biologists and engineers create a new generation of robots that imitate life. Science, 2000, 288, 80–83.CrossRefGoogle Scholar
  25. [25]
    Bandyopadhyay P R, Hrubes J D, Leinhos H A. Biorobotic adhesion in water using suction cups. Bioinspiration & biomimetics, 2008, 3, 016003.CrossRefGoogle Scholar
  26. [26]
    Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Fearing R, Israelachvili J N, Full R J. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences USA, 2002, 99, 12252–12256.CrossRefGoogle Scholar
  27. [27]
    Sethi S, Ge L, Ci L, Ajayan P M, Dhinojwala A. Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Letters, 2008, 8, 822–825.CrossRefGoogle Scholar
  28. [28]
    Mahdavi A, Ferreira L, Sundback C, Nichol J W, Chan E P, Carter D J D, Bettinger C J, Patanavanich S, Chignozha L, Ben-Joseph E, Galakatos A, Pryor H, Pomerantseva I, Masiakos P T, Faquin W, Zumbuehl A, Hong S, Borenstein J, Vacanti J, Langer R, Karp J M. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences USA, 2008, 105, 2307–2312.CrossRefGoogle Scholar
  29. [29]
    Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences USA, 2003, 100, 10603–10606.CrossRefGoogle Scholar
  30. [30]
    Homann H. Haften Spinnen an einer Wasserhaut? Naturwissenschaften, 1957, 44, 318–319.CrossRefGoogle Scholar
  31. [31]
    Varenberg M, Gorb S. A beetle-inspired solution for underwater adhesion. Journal of the Royal Society Interface, 2008, 5, 383–385.CrossRefGoogle Scholar
  32. [32]
    Forbes P. Self-cleaning materials: Lotus leaf-inspired nanotechnology. Scientific American, August 2008.Google Scholar

Copyright information

© Jilin University 2008

Authors and Affiliations

  1. 1.Institute of Micro and NanomaterialsUniversity of UlmUlmGermany
  2. 2.Institute for NanotechnologyResearch Center KarlsruheKarlsruheGermany

Personalised recommendations