Journal of Nuclear Cardiology

, Volume 6, Issue 1, pp 54–68 | Cite as

Clinical review of attenuation-corrected cardiac SPECT

  • James R. Corbett
  • Edward P. Ficaro
Review

Summary

Rather than the introduction of a heralded technologic advancement in cardiac SPECT imaging challenging the accuracy of PET perfusion imaging, the commercial introduction of attenuation correction, has been met with at least as many negative as positive reports. Some studies have reported significant improvements in specificity or specificity and sensitivity, especially for high-risk patterns of coronary artery disease; others have reported no improvement or a decrease in accuracy resulting from the introduction of troublesome artifacts. Although this review has attempted to emphasize the positive aspects of attenuation-corrected cardiac SPECT perfusion imaging and the potential for improved patient care it may provide, several negative reports continue to appear.68,69,108,109 Still there has been sufficient positive data reported to suggest that with fully developed, accurate, and robust correction methods, significant gains in SPECT assessments, of the presence and extent of CHD, patient risk, and myocardial viability can be anticipated. Ultimately attenuation correction for cardiac SPECT should have a positive impact on the management of patients with coronary artery disease with important savings in lives and health care dollars.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tamaki N, Yonekura Y, Mukai T, Kodama S, Kadota K, Kambara H, et al. Stress thallium-201 transaxial emission computed tomography: quantitative versus qualitative analysis for evaluation of coronary artery disease. J Am Coll Cardiol 1984;4:1213–21.PubMedGoogle Scholar
  2. 2.
    DePasquale EE, Nody AC, DePuey EG, Garcia EV, Pilcher G, Bredlau C, et al. Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. Circulation 1988;77:316–27.PubMedGoogle Scholar
  3. 3.
    Wackers FJT, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, et al. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for mycardial perfusion imaging. J Nucl Med 1989;30:301–11.PubMedGoogle Scholar
  4. 4.
    Mahmarian JJ, Pratt CM, Cocanougher MK, Verani MS. Altered myocardial perfusion in patients with angina pectoris or silent ischemia during exercise as assessed by quantitative thallium-201 single-photon emission computed tomography. Circulation 1990;82:1305–15.PubMedGoogle Scholar
  5. 5.
    Nishimura S, Mahmarian JJ, Boyce TM, Verani MS. Quantitative thallium-201 single-photon emission tomography during maximal pharmacologic coronary vasodilation with adenosine for assessing coronary artery disease. J Am Coll Cardiol 1991;18:736–45.PubMedGoogle Scholar
  6. 6.
    Iskandrian AS, Heo J, Kong B, Lyons E. Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol 1989;14:1477–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Van Train KF, Maddahi J, Berman DS, Kiat H, Areeda J, Prigent F, et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med 1990;31:1168–79.PubMedGoogle Scholar
  8. 8.
    Allman KC Berry J, Sucharski LA, Stafford KA, Petry NA, Wysor W, et al. Determination of extent and location of coronary artery disease in patients without prior myocardial infarction by thallium-201 tomography with pharmacologic stress. J Nucl Med 1992;33:2067–73.PubMedGoogle Scholar
  9. 9.
    Schelbert H, Wisenberg G, Phelps M, Gould K, Henze E, Hoffman E, et al. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in man with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982;49:1197–207.PubMedCrossRefGoogle Scholar
  10. 10.
    Yonekura Y, Tamaki N, Senda M, Nohara R, Kambara H, Konishi Y, et al. Detection of coronary artery disease with 13N-ammonia and high-resolution positron-emission computed tomography. Am Heart J 1987;113:645–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Demer L, Gould K, Goldstein R, Kirkeeide R, Mullani N, Smalling R, et al. Assessment of coronary artery disease severity by positron emission tomography: comparision with quantitative arteriography in 193 patients. Circulation 1989;79:825–35.PubMedGoogle Scholar
  12. 12.
    Go RT, Marwick TH, MacIntyre WJ, Saha GB, Neumann DR, Underwood DA, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990;31:1899–905.PubMedGoogle Scholar
  13. 13.
    Stewart RE, Schwaiger M, Molina E, Popma J, Gacioch GM, Kalus M, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67:1303–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Williams B, Millani N, Jansen D, et al. A retrospective study of the diagnostic accuracy of a community hospital-based PET center for the detection of coronary artery disease using rubidium-82. J Nucl Med 1994;35:1586–92.PubMedGoogle Scholar
  15. 15.
    Dunn RF, Wolff L, Wagner S, Botvinick EH. The inconsistent pattern of thallium defects: a clue to the false positive perfusion scintigram. Am J Cardiol 1981;48:224–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Friedman TD, Greene AC, Iskandrian AS, Hakki AH, Kane S, Segal BL. Exercise thallium-201 myocardial scintigraphy in women: correlation with coronary arteriography. Am J Cardiol 1982;49:1632–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Garcia E, Van Train K, Maddahi J, et al. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med 1985;26:17–26.PubMedGoogle Scholar
  18. 18.
    Friedman J, Berman DS, Van Train K, Garcia EV, Bietendorf J, Prigent F et al. Patient motion in thallium-201 myocardial SPECT imaging: an easily identified frequent source of artifactual defect. Clin Nucl Med 1988;13:321–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Friedman J, Van Train K, Maddahi J, Rozanski A, Prigent F, Bietendorf J, et al. “Upward creep” of the heart: a frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 1989;30:1718–22.PubMedGoogle Scholar
  20. 20.
    DePuey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989;30:441–9.PubMedGoogle Scholar
  21. 21.
    O'Connor MK, Caiati C, Christian TF Gibbons RJ. Effects of scatter correction on the measurement of infarct size from SPECT cardiac phantom studies. J Nucl Med 1995;36:2080–6.PubMedGoogle Scholar
  22. 22.
    DePuey EG, Guertler-Krawczynska E, Perkins JV, Robbins WL, Whelchel JD, Clements SD. Alterations in myocardial thallium-201 distribution in patients with chronic systemic hypertension undergoing single-photon emission computed tomography. Am J Cardiol 1988;62:234–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Eisner R, Churchwell A, Noever T, Nowak D, et al. Quantitative analysis of the tomographic thallium-201 myocardial bullseye display: critical role for correcting for patient motion. J Nucl Med 1988;29:91–7.PubMedGoogle Scholar
  24. 24.
    Cooper JA, Neumann PH, McCandless BK. Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 1992;33:1566–71.PubMedGoogle Scholar
  25. 25.
    Prigent FM, Hyun M, Berman DS, Rozanksi A. Effect of motion on thallium-201 SPECT studies: a simulation and clinical study. J Nucl Med 1993;34:1845–50.PubMedGoogle Scholar
  26. 26.
    Botvinick EH, Zhu Y, O'Connell WJ, Dae MW. A quantitative assessment of patient motion and its effect on myocardial perfusion SPECT images. J Nucl Med 1993;34:303–10.PubMedGoogle Scholar
  27. 27.
    Eisner RL, Nowak ND, Carlson W, Dunn CD, Oates J, Cloninger K, et al. Use of cross-correlation function to detect patient motion during SPECT imaging. J Nucl Med 1987;28:97–101.PubMedGoogle Scholar
  28. 28.
    Cooper JA, Neumann PH, McCandless BK. Detection of patient motion during tomographic myocardial perfusion imaging. J Nucl Med 1993;34:1341–8.PubMedGoogle Scholar
  29. 29.
    Germano G, Chua T, Kavanagh PB, Kiat H, Berman DS. Detection and correction of patient motion in dynamic and static myocardial SPECT using a multi-detector camera. J Nucl Med 1993;34:1349–55.PubMedGoogle Scholar
  30. 30.
    Sinusas A, Shi Q, Vitols P, Fetterman R, Maniawski P, Zaret B, et al. Impact of regional ventricular function, geometry, and dobutamine stress on quantitative 99mTc-sestamibi defect size. Circulation 1993;88:2224–34.PubMedGoogle Scholar
  31. 31.
    Mannting F, Morgan-Mannting MG. Gated SPECT with technetium-99m-sestamibi for assessment of myocardial perfusion abnormalities. J Nucl Med 1993;34:601–8.PubMedGoogle Scholar
  32. 32.
    Ficaro E, Duvernoy C, Fessler J, Corbett J. End-diastolic vs ungated attenuation corrected myocardial perfusion SPECT for the detection of coronary heart disease [abstract]. J Nucl Med 1998;39:74P.Google Scholar
  33. 33.
    Gordon DG, Pfisterer M, Williams R, Walaski S, Ashburn W. The effect of diaphragmatic attenuation on 201Tl images. Clin Nucl Med 1979;4:150–1.PubMedCrossRefGoogle Scholar
  34. 34.
    Goodgold HM, Rehder JG, Samuels LD, Chaitman BR. Improved interpretation of exercise Tl-201 myocardial perfusion scintigraphy in women: characterization of breast attenuation artifacts. Radiology 1987;165:361–6.PubMedGoogle Scholar
  35. 35.
    Tailefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F. Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 1997;29:69–77.CrossRefGoogle Scholar
  36. 36.
    Ficaro EP, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography: diagnostic accuracy of attenuation-corrected 99mTc-sestamibi single-photon emission computed tomography. Circulation 1996;93:463–73.PubMedGoogle Scholar
  37. 37.
    Dunn R, Wolff L, Wagner S, Botvinick E. The inconsistent pattern of thallium defects: a clue to the false-positive perfusion scintigram. Am J Cardiol 1981;48:224–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Tamaki N, Yonekura Y, Kadota K, Kambara H, Torizuka K. Appearance of breast attenuation artifacts with thallium myocardial, SPECT imaging. Clin Nucl Med 1985;10:694–6.CrossRefGoogle Scholar
  39. 39.
    Eisner RL, Tamas MJ, Clononger K, Shonkoff D, Oates JA, Gober AM, et al. Normal SPECT thallium-201 bull's-eye display: gender differences. J Nucl Med 1988;29:1901–9.PubMedGoogle Scholar
  40. 40.
    Frey EC, Tsui BM, Perry JR. Simultaneous acquisition of emission and transmission data for improved Tl-201 cardiac SPECT imaging using a Tc-99m transmission source. J Nucl Med 1992;33:2238–45.PubMedGoogle Scholar
  41. 41.
    Jaszczak RJ, Gilland DR, Hanson MW, Jang S, Greer KL, Coleman RE. Fast transmission CT for determining attenuation maps using collimated line source, rotatable air-copper-lead attenuators and fan-beam collimation. J Nucl Med 1993;34:1577–86.PubMedGoogle Scholar
  42. 42.
    Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 1993;34:1752–60.PubMedGoogle Scholar
  43. 43.
    Tung C-H, Gullberg GL, Zeng GL, Christian PE, Datz FL, Morgan HT. Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 1992;39:1134–43.CrossRefGoogle Scholar
  44. 44.
    Ficaro EP, Fessler JA, Ackermann RJ, Rogers WL, Corbett JR, Schwaiger M. Simultaneous transmission-emission thallium-201 cardiac SPECT: effect of attenuation correction on myocardial tracer distribution. J Nucl Med 1995;36:921–31.PubMedGoogle Scholar
  45. 45.
    Van Train KF, Garcia EV, Maddahi J, Areeda J, Cooke CD, Kiat H, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994;35:609–18.PubMedGoogle Scholar
  46. 46.
    Maddahi J, Van Train K, Prigent F, Garcia EV, Friedman J, Ostrzega E, et al. Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: optimization and prospective validation of a new technique. J Am Coll Cardiol 1989;14:1689–99.PubMedGoogle Scholar
  47. 47.
    Van Train KF, Areeda J, Garcia EV, Cooke D, Maddahi J, Kiat H, et al. Quantitative same-day rest-stress technetium-99-m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 1993;34:1494–502.PubMedGoogle Scholar
  48. 48.
    Allman KC, Berry J, Sucharski LA, Stafford KA, Petry NA, Wysor W, et al. Determination of extent and location of coronary artery disease in patients without prior myocardial infarction by thallium-201 tomography with pharmacologic stress. J Nucl Med 1992;33:2067–73.PubMedGoogle Scholar
  49. 49.
    Hosoba M, Wani H, Toyama H, Murata H, Tanaka E. Automated body contour detection in SPECT: effects on quantitative studies. J Nucl Med 1986;27:1184–91.PubMedGoogle Scholar
  50. 50.
    Madsen MT, Kirchner PT, Edlin JP, Nathan MA, Kahn D. An emission-based technique for obtaining attenuation correction data for myocardial SPECT studies. Nucl Med Commun 1993;14:689–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28:844–51.PubMedGoogle Scholar
  52. 52.
    Jaszczak RJ, Gilland DR, Hanson MW, Jang S, Greer KL, Coleman RE. Fast transmission CT for determining attenuation maps using a collimated line source, rotatable air-copper-lead attenuators and fan-beam collimation. J Nucl Med 1993;34:1577–86.PubMedGoogle Scholar
  53. 53.
    Chang W, Loncaric S, Huang G, Sanpitak P. Asymmetric fan transmission CT on SPECT systems. Phys Med Biol 1995;40:913–28.PubMedCrossRefGoogle Scholar
  54. 54.
    Hansen CL, Siegel JA. Altenuation correction of thallium SPECT using differential attenuation of thallium photons J Nucl Med 1992;33:1574–7.PubMedGoogle Scholar
  55. 55.
    Gullberg GT, Huesman RH, Malko JA, Pelc NJ, Budinger TF. An attenuated projector-backprojector for iterative SPECT reconstruction. Phys Med Biol 1985;30:799–816.PubMedCrossRefGoogle Scholar
  56. 56.
    Manglos SH, Jaszczak RJ, Floyd CE, Hahn LJ, Greer KL, Coleman RE. Nonisotropic attenuation in SPECT: phantom tests of quantitative effects and compensation techniques. J Nucl Med 1987;28:1584–91.PubMedGoogle Scholar
  57. 57.
    Tsui BM, Gullberg GT, Edgerton ER, Ballard JG, Perry JR, McCartney WH, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med 1989;30:497–507.PubMedGoogle Scholar
  58. 58.
    Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28:844–51.PubMedGoogle Scholar
  59. 59.
    Fessler JA. Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Trans Med Imaging 1994;13:290–300.PubMedCrossRefGoogle Scholar
  60. 60.
    King MA, Tsui BM, Pan TS. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: part 1—impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 1995;2:513–24.PubMedCrossRefGoogle Scholar
  61. 61.
    King MA, Tsui BM, Pan TS, Glick SJ, Soares EJ. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: part 2—attenuation compensation algorithms. J Nucl Cardiol 1996;3:55–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;25:638–43.CrossRefGoogle Scholar
  63. 63.
    Galt JR, Cullom SJ, Garcia EV. SPECT quantification: a simplified method of attenuation and scatter correction for cardiac imaging. J Nucl Med 1992;33:2232–7.PubMedGoogle Scholar
  64. 64.
    Pan TS, King MA, Luo DS, Dahlberg ST, Villegas BJ. Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol 1997;4:42–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Ficaro EP, Rogers WL, Schwaiger M. Comparison of Am-241 and Tc-99m as transmission sources for the attenuation correction of Tl-201 cardiac SPECT studies. J Nucl Med 1993;34:30P.Google Scholar
  66. 66.
    Stewart R, Ponto R, Dickinson C, Meakem L, Chava R, Juni J. In-vivo validation of simultaneous transmission-emission protocol (STEP) for Tc99m-sestamibi SPECT-quantitative comparison with N-13-ammonia PET. J Am Coll Cardiol 1995;25:217A.CrossRefGoogle Scholar
  67. 67.
    Miron S, Conant R, Sodee D, Amini S. Clinical evaluation of simultaneous transmission emission SPECT myocardial perfusion images (STEP) [abstract]. J Nucl Med 1995;36:12P.Google Scholar
  68. 68.
    Lee DS, So Y, Kim KM, Chun KJ, Chung JK, Lee MC. Additive diagnostic values of gating and attenuation-correction using rest/stress perfusion SPECT in coronary artery disease? J Am Coll Cardiol 1998;31:176A.CrossRefGoogle Scholar
  69. 69.
    DePuey EG, Shahzad K. Attenuation correction versus gating to characterize Tc-99m sestamibi fixed defects as attenuation artifacts or scar. J Am Coll Cardiol 1998;31:175A.CrossRefGoogle Scholar
  70. 70.
    Ficaro E, Fessler J, Shreve P, Kritzman J, Rose P, Corbett J. Simultaneous transmission/emission myocardial perfusion tomography: diagnostic accuracy of attenuation-corrected Tc-99m sestamibi single-photon emission computed tomography. Circulation 1996;93:463–73.PubMedGoogle Scholar
  71. 71.
    Kluge R, Sattler B, Seese A, Knapp WH. Attenuation correction by simultaneous emission-transmission myocardial single-photon emission tomography using a technetium-99m-labelled radiotracer: impact on diagnostic accuracy. Eur J Nucl Med 1997;24:1107–14.PubMedGoogle Scholar
  72. 72.
    Matsunari I, Boning G, Ziegler SI, Kosa I, Nekolla SG, Ficaro EP, et al. Attenuation-corrected rest thallium-201/stress technetium 99m sestamibi myocardial SPECT in normals. J Nucl Cardiol 1998;5:48–55.PubMedCrossRefGoogle Scholar
  73. 73.
    Ficaro EP, Fessler JA, Ackermann RJ, Rogers WL, Corbett JR, Schwaiger M. Simultaneous transmission-emission thallium-201 cardiac SPECT: effect of attenuation correction on myocardial tracer distribution. J Nucl Med 1995;36:921–31.PubMedGoogle Scholar
  74. 74.
    He ZX, Lakkis NM, America Y, Groot D, Ahmad A, Badruddin SM, et al. Qualitative and quantitative comparison of sestamibi SPECT without and with attenuation correction for detection of coronary artery disease in patients with large body habitus [abstract] J Am Coll Cardiol 1997;29:302A.Google Scholar
  75. 75.
    Hendel R, Follansbee W, Heller G, Cullom J, Berman D. Comparison of exercise and vasodilator stress myocardial perfusion SPECT imaging for the determination of normalcy rate and the effects of attenuation correction [abstract]. J Am Coll Cardiol 1997;29:302A.Google Scholar
  76. 76.
    Kluge R, Seese A, Sattler B, Knapp WH. Non-uniform attenuation correction for myocardial SPET using two Gd-153 line sources. Nuklearmedizin 1996;35:205–11.PubMedGoogle Scholar
  77. 77.
    Prvulovich EM, Lonn AH, Bomanji JB, Jarritt PH, Ell PJ. Effect of attenuation correction on myocardial thallium-201 distribution in patients with a low likelihood of coronary artery disease. Eur J Nucl Med 1997;24:266–75.PubMedGoogle Scholar
  78. 78.
    Chouraqui P, Livschitz S, Sharir T, Wainer N, Wilk M, Moalem I, et al. Evaluation of an attenuation correction method for thallium-201 myocardial perfusion tomographic imaging of patients with low likelihood of coronary artery disease. J Nucl Cardiol 1998;5:369–77.PubMedCrossRefGoogle Scholar
  79. 79.
    Laubenbacher C, Rothley J, Sitomer J, Beanlands R, Sawada S, Sutor R, et al. An automated analysis program for the evaluation of cardiac PET studies: initial results in the detection and localization of coronary artery disease using nitrogen-13-ammonia. J Nucl Med 1993;34:968–78.PubMedGoogle Scholar
  80. 80.
    Stewart R, Ponto R. Dickinson C, Meakem L, Chava R, Juni J. Comparison of the simultaneous transmission-emission protocol (STEP) with parallel hole SPECT for Tc-99m sestamibi perfusion imaging: validation with PET. J Nucl Med 1995;36;169P.Google Scholar
  81. 81.
    Hendel R, Berman D, Follansbee W, Heller G, Mahmarian J, Cullom J, et al. Effects of attenuation corrected SPECT myocardial perfusion imaging on diagnostic accuracy: results of a multicenter trial [abstract]. Circulation 1996;94:I-303.Google Scholar
  82. 82.
    Ficaro EP, Fessler JA, Rogers WL, Schwaiger M. Comparison of Am-241 and Tc-99m as transmission source for the attenuation correction of Tl-201 SPECT imaging of the heart. J Nucl Med 1994;35:652–63.PubMedGoogle Scholar
  83. 83.
    McCartney WH, Tsui BMW, Adams KF, Lewis DP, Lalush DS, Bujenovic LS, et al. Clinical evaluation of attenuation and scatter compensation in Tl-201 SPECT [abstract]. J Nucl Med 1996;37:80P.Google Scholar
  84. 84.
    Brown K. Prognostic value of thallium-201 myocardial perfusion imaging: a diagnostic tool comes of age. Circulation 1991;83:363–81.PubMedGoogle Scholar
  85. 85.
    Eagle K, Brundage B, Chaitman B, et al. Guidelines for perioperative cardiovascular evaluation of noncardiac surgery. Report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). J Am Coll Cardiol 1996;27:910–48.PubMedCrossRefGoogle Scholar
  86. 86.
    Dash H, Massie B, Botvinick E, Brundage B. The noninvasive identification of left main and three-vessel coronary artery disease by myocardial stress perfusion scintigraphy and treadmill exercise electrocardiography. Circulation 1980;60:276–84.Google Scholar
  87. 87.
    Rehn T, Griffith L, Achuff S, Bailey I, Bulkley B, Burow R, et al. Exercise thallium-201 myocardial imaging in left main coronary artery disease: sensitive but not specific. Am J Cardiol 1981;48:217–23.PubMedCrossRefGoogle Scholar
  88. 88.
    Nygaard T, Gibson R, Ryan J, Gascho J, Watson D, Beller G. Prevalence of high-risk thallium-201 scintigraphic findings in left main coronary artery stenosis: comparison with patients with multiple- and single-vessel coronary artery disease. Am J Cardiol 1984;53:462–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Wakasugi S, Shibata N, Kobayashi T, Fudemoto Y, Hasegawa Y, Nakano S. Specific perfusion pattern in stress Tl-201 myocardial scintigraphy of left main coronary artery disease. Eur J Nucl Med 1986;12:369–74.PubMedCrossRefGoogle Scholar
  90. 90.
    Maddahi J, Abdulla A, Garcia EV, Swan H, Berman D. Noninvasive indentification of left main and triple vessel coronary artery disease: improved accuracy using quantitative analysis of regional myocardial stress distribution and washout of thallium-201. J Am Coll Cardiol 1986;7:53–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Chikamori T, Doi Y, Yonezawa Y, Yamada M, Seo H, Ozawa T. Noninvasive identification of significant narrowing of the left main coronary artery by dipyridamole thallium scintigraphy. Am J Cardiol 1991;68:472–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Iskandrian AS, Heo J, Lemlek J, Ogilby JD. Identification of high risk patients with left main and three-vessel coronary artery disease using stepwise discriminant analysis of clinical, exercise and tomographic thallium data. Am Heart J 1993;125:221–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Christian T, Miller T, Bailey K, Gibbons R. Noninvasive identification of severe coronary artery disease using exercise tomographic thallium-210 imaging. Am J Cardiol 1992;70:14–20.PubMedCrossRefGoogle Scholar
  94. 94.
    Weiss A, Berman D, Lew A, Nielsen J, Potkin B, Swan H, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol 1987;9:752–9.PubMedGoogle Scholar
  95. 95.
    Mazzanti M, Germano G, Kiat H, Kavanagh PB, Alexanderson E, Friedman JD, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 1996;27:1612–20.PubMedCrossRefGoogle Scholar
  96. 96.
    Ficaro E, Duvernoy C, Karabajakian M, Corbett J. Evaluation of attenuation corrected SPECT perfusion imaging in patients with multi-vessel disease [abstract]. Circulation 1997;96:I-308.Google Scholar
  97. 97.
    Duvernoy C, Ficaro E, Karabajakian M, Rose P, Corbett J. Left main coronary disease: increased sensitivity with quantitative attenuation corrected SPECT perfusion imaging. J Am Coll Cardiol 1997;29:302A.Google Scholar
  98. 98.
    Corbett J, Karabajakian M, Rose P, Ficaro E. The effect of attenuation correction on cardiac risk assessment using dual isotope myocardial perfusion imaging with rest Tl-201 and stress Tc-99m sestamibi. J Nucl Med 1997;38:83P.Google Scholar
  99. 99.
    Hansen CL, Crabbe D, Rubin, S. Lower diagnostic accuracy of thallium-201 SPECT myocardial perfusion imaging in women: an effect of smaller chamber size. J Am Coll Cardiol 1996;28:1214–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Ficaro E, Shreve P, Kritzman J, Rose P, Corbett J. Evaluation of attenuation corrected cardiac SPECT perfusion imaging in women [abstract]. Circulation 1996;94:I-13.Google Scholar
  101. 101.
    Wawrzynski PE, Ficaro EP, Rose PA, Corbett JR. Simultaneous transmission emission imaging of rest/redistribution thallium-201 myocardial perfusion images: the effect of attenuation correction on defect reversibility in patients with regional dyssynergy. J Nucl Med 1996;37:148P.Google Scholar
  102. 102.
    Wawrzynski PE, Ficaro EP, Rose PA, Corbett JR. Simultaneous transmission emission imaging of stress Tc-99m sestamibi/rest thallium-201 myocardial perfusion images: the effect of attenuation correction on defect reversibility in patients with regiona dyssynergy. J Nucl Med 1996;37:176P.Google Scholar
  103. 103.
    Roelants V, Vander Borght T, Walrand S, George J, Bernard X, De Coster P, et al. Impact of attenuation correction on gated Tc-99m MIBI SPECT for wall thickening analysis in the evaluation of myocardial viability. J Nucl Med 1998;39:74P.Google Scholar
  104. 104.
    Iida H, Eberl S. Quantitative assessment of regional myocardial blood flow with thallium-201 and SPECT. J Nucl Cardiol 1998;5:313–31.PubMedCrossRefGoogle Scholar
  105. 105.
    “Question of the month-February.” Technology Marketing Group, Des Plaines, Ill, 1998.Google Scholar
  106. 106.
    Heller EN, DeMan P, Liu YH, Dione DP, Zubal IG, Wackers FJ, et al. Extracardiac activity complicates quantitative cardiac SPECT imaging using a simultaneous transmission-emission approach. J Nucl Med 1997;38:1882–90.PubMedGoogle Scholar
  107. 107.
    Hendel RC, Berman DS, Cullom SJ, Follansbee WP, Braymer WK. Diagnostic value of SPECT myocardial perfusion imaging utilizing attenuation and scatter correction with resolution compensation: results of a multicenter trial [abstract]. Circulation 1997;96:I-308.Google Scholar
  108. 108.
    DePuey EG, Shahzad K. Does scatter correction significantly improve attenuation compensation for Tc-99m myocardial perfusion SPECT [abstract]. J Nucl Med 1998;39:74P.Google Scholar
  109. 109.
    Buvat I, Vidal R, Migneco O, Desvignes P, Darcourt J, Montaru P, et al. Does attenuation correction in ML-EM reconstruction affect coronary artery disease (CAD) diagnosis accuracy in TI-201 stress/redistribution cardiac imaging? [abstract]. J Nucl Med 1998;39:73P.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 1999

Authors and Affiliations

  • James R. Corbett
    • 1
  • Edward P. Ficaro
    • 1
  1. 1.Department of Internal Medicine, Divisions of Nuclear Medicine and CardiologyThe University of Michigan CenterslAnn Arbor

Personalised recommendations