Metabolic and molecular basis of insulin resistance

Topics in Molecular Biology

References

  1. 1.
    DeFronzo RA. Pathogenesis of type 2 diabetes mellitus: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev 1997;5:117–269.Google Scholar
  2. 2.
    Grill V. A comparison of brain glucose metabolism in diabetes as measured by positron emission tomography or by arteriovenous techniques. Ann Med 1990;22:171–5.PubMedCrossRefGoogle Scholar
  3. 3.
    DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in non-insulin dependent diabetes mellitus. J Clin Invest 1985;76:149–55.CrossRefGoogle Scholar
  4. 4.
    DeFronzo RA. Lilly lecture. The triumvirate: beta cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988;37:667- 87.Google Scholar
  5. 5.
    DeFronzo RA, Jacot E, Jequier E, et al. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry. Diabetes 1981;30:1000–7.Google Scholar
  6. 6.
    Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis. Its importance in human glucose homeostasis. Diabetes Care 2001;24:382–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Magnusson I, Katz LD, Shulman RG, Shulman GI. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 1991;254:573–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Katz LD, Glickman MG, Rapoport S, Ferrannini E, DeFronzo RA. Splanchnic and peripheral disposal of oral glucose in man. Diabetes 1983;32:675–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Mandarino L, Bonadonna R, McGuinness O, Wasserman D. Regulation of muscle glucose uptake in vivo. In: Jefferson LS, Cherrington AD, editors. Handbook of physiology-section 7: the endocrine system. Volume II: the endocrine pancreas and regulation of metabolism. Oxford: Oxford University Press; 2001. P. 803–48.Google Scholar
  10. 10.
    Virtanen KA, Peltoniemi P, Marjamaki P, et al. Human adipose tissue glucose uptake determined using [(18)F]-fluoro-deoxy-glucose ([(18)F]FDG) and PET in combination with microdialysis. Diabetologia 2001;44:2171–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Groop L, Saloranta C, Shank M, et al. The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and non-insulin dependent diabetes mellitus. J Clin Endocrinol Metab 1991;72:96–107.PubMedGoogle Scholar
  12. 12.
    Reaven GM. The fourth musketeer-from Alexandre Dumas to Claude Bernard. Diabetologia 1995;38:3–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Bergman RN. Non-esterified fatty acids and the liver: why is insulin secreted into the portal vein? Diabetologia 2000;43:946–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Cherrington AD. Control of glucose uptake and release by the liver in vivo. Diabetes 1999;48:1198–214.PubMedCrossRefGoogle Scholar
  15. 15.
    Polonsky KS, Sturis J, Bell GI. Non-insulin-dependent diabetes mellitus-a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl J Med 1996;334:777–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Saad MF, Knowler WC, Pettitt DJ, et al. Sequential changes in serum insulin concentration during development of non-insulindependent diabetes. Lancet 1989;1:1356–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Diamond MP, Thornton K, Connolly-Diamond M, Sherwin RS, DeFronzo RA. Reciprocal variations in insulin-stimulated glucose uptake and pancreatic insulin secretion in women with normal glucose tolerance. J Soc Gynecol Invest 1995;2:708–15.CrossRefGoogle Scholar
  18. 18.
    Hollenbeck CB, Reaven GM. Variations in insulin-stimulated glucose uptake in healthy individuals with normal glucose tolerance. J Clin Endocrinol Metab 1987;64:1169–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Reaven GM. Banting lecture. Role of insulin resistance in human disease. Diabetes 1988;37:595–607.Google Scholar
  20. 20.
    Faber OK, Hagen C, Binder C, et al. Kinetics of human connecting peptide in normal and diabetic subjects. J Clin Invest 1978;62:197- 203.PubMedCrossRefGoogle Scholar
  21. 21.
    DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 1989;38:387–95.CrossRefGoogle Scholar
  22. 22.
    Weyer C, Hanson RL, Tataranni PA, Bogardus C, Pratley RE. A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance. Evidence for a pathogenic role of relative hyperinsulinemia. Diabetes 2000;49:2094–101.PubMedCrossRefGoogle Scholar
  23. 23.
    Arner P, Pollare T, Lithell H. Different etiologies of type 2 (non-insulin-dependent) diabetes mellitus in obese and non-obese subjects. Diabetologia 1991;34:483–7.PubMedCrossRefGoogle Scholar
  24. 24.
    De Fronzo RA, Ferrannini E, Hendler R, Felig P, Wahren J. Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia. Diabetes 1983;32:35–45.Google Scholar
  25. 25.
    Mevorach M, Giacca A, Aharon Y, et al. Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus. J Clin Invest 1998;102:744–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Waldhausl W, Bratusch-Marrain P, Gasic S, Korn A, Nowotny P. Insulin production rate, hepatic insulin retention, and splanchnic carbohydrate metabolism after oral glucose ingestion in hyperinsulinemic type II (non-insulin dependent) diabetes mellitus. Diabetologia 1982;23:6–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Consoli A, Nurjahn N, Capani F, Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 1989;38:550–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Baron AD, Schaeffer L, Shragg P, Kolterman OG. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 1987;36:274–83.PubMedCrossRefGoogle Scholar
  29. 29.
    Matsuda M, DeFronzo RA, Glass L, et al. Glucagon dose-response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals. Metabolism 2002;51:1111–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Kolterman OG, Gray RS, Griffin J, et al. Receptor and postreceptor defects contribute to the insulin resistance in non-insulin-dependent diabetes mellitus. J Clin Invest 1981;68:957–69.PubMedCrossRefGoogle Scholar
  31. 31.
    Campbell P, Mandarino L, Gerich J. Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose intake in non-insulin-dependent diabetes mellitus. Metabolism 1988;37:15–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Utriainen T, Takala T, Luotolahti M, et al. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia 1998;41:555–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Mokdad AH, Ford ES, Bowman BA, et al. Diabetes trends in the United States, 1990–1998. Diabetes Care 2000;23:1278–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Reaven GM, Hollenbeck C, Jeng C-Y, Wu MS, Chen Y-DI. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 hours in patients with NIDDM. Diabetes 1988;37:1020–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Jansson P-A, Larsson A, Smith U, Lonroth P. Lactate release from the subcutaneous tissue in lean and obese men. J Clin Invest 1994;93:240–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance. A reexamination. Diabetes 2000;49:677–83.PubMedCrossRefGoogle Scholar
  37. 37.
    Carpentier A, Mittelman SD, Bergman RN, Giacca A, Lewis GF. Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes. Diabetes 2000;49:399–408.PubMedCrossRefGoogle Scholar
  38. 38.
    Greco AV, Mingrone G, Giancaterini A, et al. Insulin resistance in morbid obesity. Reversal with intramyocellular fat depletion. Diabetes 2002;51:144–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Ryysy L, Hakkinen AM, Goto T, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 2000; 49:749–58.PubMedCrossRefGoogle Scholar
  40. 40.
    McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002;51:7–18.PubMedCrossRefGoogle Scholar
  41. 41.
    Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 2001;414:799–806.PubMedCrossRefGoogle Scholar
  42. 42.
    Shepherd PR, Kahn BB. Glucose transporters and insulin action. Implications for insulin resistance and diabetes mellitus. N Engl J Med 1999;341:248–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Virkamaki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 1999;103:931–43.PubMedCrossRefGoogle Scholar
  44. 44.
    White MF, Livingston JN, Backer JM, et al. Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell 1992;54:641–9.CrossRefGoogle Scholar
  45. 45.
    Kerouz NJ, Horsch D, Pons S, Kahn CR. Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J Clin Invest 1997;100:3164–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Sun XJ, Miralpeix M, Myers MG Jr, et al. The expression and function of IRS-1 in insulin signal transmission. J Biol Chem 1992;267:22662–72.PubMedGoogle Scholar
  47. 47.
    Ruderman N, Kapeller R, White MF, Cantley LC. Activation of phosphatidylinositol-3-kinase by insulin. Proc Natl Acad Sci U S A 1990;87:1411–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995;378:785–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Brady MJ, Nairn AC, Saltiel AR. The regulation of glycogen synthase by protein phosphatase 1 in 3T3-L1 adipocytes. Evidence for a potential role for DARPP-32 in insulin action. J Biol Chem 1997;272:29698–703.PubMedCrossRefGoogle Scholar
  50. 50.
    Okada T, Sakuma L, Fukui Y, Hazeki O, Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. J Biol Chem 1994;269:3568–73.PubMedGoogle Scholar
  51. 51.
    Cross D, Alessi D, Vandenheed J, et al. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin but not rapamycin. Biochem J 1994;303:21–6.PubMedGoogle Scholar
  52. 52.
    Osawa H, Sutherland C, Robey R, Printz R, Granner D. Analysis of the signaling pathway involved in the regulation of hexokinase II gene transcription by insulin. J Biol Chem 1996;271:16690–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000;105:311–20.PubMedCrossRefGoogle Scholar
  54. 54.
    54.Lazar DF, Wiese RJ, Brady MJ, et al. Mitogen-activated protein kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem 1995;270:20801–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Dent P, Lavoinne A, Nakielny S, et al. The molecular mechanisms by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 1990;348:302–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Molina JM, Ciaraldi TP, Brady D, Olefsky JM. Decreased activation rate of insulin-mediated glucose transport in adipocytes from obese and NIDDM subjects. Diabetes 1989;38:991–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Caro JF, Sinha MK, Raju SM, et al. Insulin receptor kinase in human skeletal muscle from obese subjects with and without non-insulin dependent diabetes. J Clin Invest 1987;79:1330–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Arner P, Einarsson K, Ewerth S, Livingston J. Studies on the human liver insulin receptor in non-insulin-dependent diabetes mellitus. J Clin Invest 1986;77:1716–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Lonnroth P, Digirolamo M, Krotkiewski M, Smith U. Insulin binding and responsiveness in fat cells from patients with reduced glucose tolerance and type II diabetes. Diabetes 1983;32:748–54.PubMedCrossRefGoogle Scholar
  60. 60.
    Cocozza S, Procellini A, Riccardi G, et al. NIDDM associated with mutation in tyrosine kinase domain of insulin receptor gene. Diabetes 1992;41:521–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Moller DE, Yakota A, Flier JS. Normal insulin receptor cDNA sequence in Pima Indians with non-insulin-dependent diabetes mellitus. Diabetes 1989;38:1496–1500.PubMedCrossRefGoogle Scholar
  62. 62.
    Nyomba BL, Ossowski VM, Bogardus C, Mott DM. Insulinsensitive tyrosine kinase relationship with in vivo insulin action in humans. Am J Physiol 1990;258:E964–74.PubMedGoogle Scholar
  63. 63.
    Freidenberg GR, Reichart D, Olefsky JM, Henry RR. Reversibility of defective adipocyte insulin receptor kinase activity in noninsulin dependent diabetes mellitus. Effect of weight loss. J Clin Invest 1988;82:1398–406.PubMedCrossRefGoogle Scholar
  64. 64.
    Pratipanawatr W, Pratipanawatr T, Cusi K, et al. Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes 2001;50:2572–8.PubMedCrossRefGoogle Scholar
  65. 65.
    De Fea K, Roth RA. Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem 1997;272:31400–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Dunaif A, Xia J, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest 1995;96:801–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Printz RL, Koch S, Potter LR, et al. Hexokinase II mRNA and gene structure, regulation by insulin, and evolution. J Biol Chem 1993;268:5209–19.PubMedGoogle Scholar
  68. 68.
    Kashiwagi A, Verso MA, Andrews J, et al. In vitro insulin resistance of human adipocytes isolated from subjects with non-insulin-dependent diabetes mellitus. J Clin Invest 1983;72:1246–54.PubMedCrossRefGoogle Scholar
  69. 69.
    Zierath JR, He L, Guma A, et al. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 1996;39:1180–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Pedersen O, Bak J, Andersen P, et al. Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 1990;39:865–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Goodyear LJ, Hirschman MF, Napoli R, et al. Glucose ingestion causes GLUT4 translocation in human skeletal muscle. Diabetes 1996;45:1051–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Williams KV, Price JC, Kelley DE. Interactions of impaired glucose transport and phosphorylation in skeletal muscle insulin resistance. A dose-response assessment using positron emission tomography. Diabetes 2001;50:2069–79.PubMedCrossRefGoogle Scholar
  73. 73.
    Jones JP, Dohn GL. Regulation of glucose transporter GLUT-4 and hexokinase II gene transcription by insulin and epinephrine. Am J Physiol 1997;273:E682–7.PubMedGoogle Scholar
  74. 74.
    Mandarino LJ, Printz RL, Cusi KA, et al. Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle. Am J Physiol 1995;269:E701–8.PubMedGoogle Scholar
  75. 75.
    Vogt C, Yki-Jarvinen H, Iozzo P, et al. Effects of insulin on subcellular localization of hexokinase II in human skeletal muscle in vivo. J Clin Endocrinol Metab 1998;83:230–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Bonadonna RC, Del Prato S, Bonora E, et al. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes 1996;45:915–25.PubMedCrossRefGoogle Scholar
  77. 77.
    Rothman DL, Shulman RG, Shulman GI. 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 1992;89:1069–75.PubMedCrossRefGoogle Scholar
  78. 78.
    Cline GW, Petersen KF, Krssak M, et al. Impaired glucose transport as a cause of decreased insulin stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 1999;341: 240–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Avogaro A, Toffolo G, Miola M, et al. Intracellular lactate- and pyruvate-interconversion rates are increased in muscle tissue of non-insulin-dependent diabetic individuals. J Clin Invest 1996;98: 108–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Shulman GI, Rothman DL, Jue T, et al. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 1990;322:223–8.PubMedGoogle Scholar
  81. 81.
    Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem 1989;58:453–508.PubMedCrossRefGoogle Scholar
  82. 82.
    Newgard CB, Brady MJ, O’Doherty RB, Saltiel AR. Organizing glucose disposal. Emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes 2000;49:1967–77.PubMedCrossRefGoogle Scholar
  83. 83.
    Thorburn AW, Gumbiner B, Bulacan F, Wallace P, Henry RR. Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin-dependent (type II) diabetes independent of impaired glucose uptake. J Clin Invest 1990;85:522–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Henry RR, Ciaraldi TP, Abrams-Carter L, et al. Glycogen synthase activity is reduced in cultured skeletal muscle cells of non-insulin-dependent diabetes mellitus subjects. J Clin Invest 1996;98: 1231–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Nyomba BL, Freymond D, Raz I, et al. Skeletal muscle glycogen synthase activity in subjects with non-insulin-dependent diabetes mellitus after glyburide therapy. Metabolism 1990;39:1204–10.PubMedCrossRefGoogle Scholar
  86. 86.
    Vestergaard H, Lund S, Larsen FS, Bjerrum OJ, Pedersen O. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1993;91: 2342–50.PubMedCrossRefGoogle Scholar
  87. 87.
    Mandarino LJ, Wright KS, Verity LS, et al. Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, phosphofructokinase, and glycogen synthase. Evidence for their role in oxidative glucose metabolism. J Clin Invest 1987;80: 655–63.PubMedCrossRefGoogle Scholar
  88. 88.
    Mandarino LJ, Madar Z, Kolterman OG, Bell JM, Olefsky JM. Adipocyte glycogen synthase and pyruvate dehydrogenase in obese and type II diabetic patients. Am J Physiol 1986;251:E489–96.PubMedGoogle Scholar
  89. 89.
    Kelley D, Mokan M, Mandarino L. Intracellular defects in glucose metabolism in obese patients with noninsulin-dependent diabetes mellitus. Diabetes 1992;41:698–706.PubMedCrossRefGoogle Scholar
  90. 90.
    Mandarino LJ, Consoli A, Jain A, Kelley DE. Interaction of carbohydrate and fat fuels in human skeletal muscle: impact of obesity and NIDDM. Am J Physiol 1996;270:E463–70.PubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2003

Authors and Affiliations

  1. 1.Diabetes Division, Department of MedicineUniversity of Texas Health Science Center at San AntonioSan Antonio

Personalised recommendations