Multistep tandem mass spectrometry for Sequencing Cyclic Peptides in an Ion-Trap Mass Spectrometer

  • Lambert C. M. Ngoka
  • Michael L. GrossEmail author


Collisionally activated decomposition (CAD) of a protonated cyclic peptide produces a superposition spectrum consisting of fragments produced following random ring opening of the cyclic peptide to give a set of acylium ions (or isomeric equivalents) of the same m/z. Assignment of the correct sequence is often difficult owing to lack of selectivity in the ring opening. A method is presented that utilizes multiple stages of CAD experiments in an electrospray ion-trap mass spectrometer to sequence cyclic peptides. A primary acylium ion is selected from the primary product-ion spectrum and subjected to several stages of CAD. Amino-acid residues are sequentially removed, one at each stage of the CAD, from the C-terminus, until a b2 ion is reached. Results are presented for seven cyclic peptides, ranging in sizes from four to eight amino-acid residues. This method of sequencing cyclic peptides eliminates ambiguities encountered with other MS/MS approaches. The power of the strategy lies in the capability to execute several stages of CAD upon a precursor ion and its decomposition products, allowing the cyclic peptide to be sequenced in an unambiguous, stepwise manner.


Cyclic Peptide Collisional Activation Tentoxin Collisionally Activate Decomposition Spectrum Isomeric Equivalent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Storm, D. R..; Rosenthal, K. S..; Swanson, P. E. Polymyxin and related antibiotics Annu. Rev. Biochem. 1977, 46, 723–763.CrossRefGoogle Scholar
  2. 2.
    Kondo, F.; Matsumoto, H.; Yamada, S.; Ishikawa, N.; Ito, E.; Nagata, S.; Ueno, Y.; Suzuki, M.; Harada, K. Detection and identification of metabolites of mycrocystins formed in vivo in mouse and rat livers Chem. Res. Toxicol. 1996, 9, 1355–1359.CrossRefGoogle Scholar
  3. 3.
    Satoh, T.; Arami, J. M.; Li, S.; Friedman, T. M.; Gao, J.; Edling, A. E.; Townsend, R.; Koch, U.; Chocksi, S.; Germann, M. W.; Korngold, R.; Huang, Z. Bioactive peptide design based on protein surface epitopes. A cyclic heptapeptide mimics CD4 dormain 1 CC′ loop and inhibits biological function. J. Biol. Chem. 1997, 272, 12175–12180.CrossRefGoogle Scholar
  4. 4.
    Duax, W. L.; Griffin, J. F.; Langs, D. A.; Smith, G. D.; Grouchulski, P.; Pletnev, V.; Ivanov, V. Molecular structure and mechanisms of action of cyclic and linear transport antibiotics. Biopolymers (Peptide Sci.) 1996, 40, 141–155.CrossRefGoogle Scholar
  5. 5.
    Ihara, M.; Ishikawa, M.; Fukuroda, T.; Saeki, T.; Funabashi, K.; Fukami, T.; Suda, H.; Yano, M. In vitro biological profile of a highly potent novel endothelin (ET) antagonist BQ-123 selective for the ETA receptor. J. Cardiovasc. Pharmacol. 1992, 20, S11-S14 (Suppl 1).Google Scholar
  6. 6.
    Yiotakis, A.; Lecoq, A.; Vassiliou, S.; Raynal, I.; Cuniasse, P.; Dive, V. Cyclic peptides with a phosphinic bond a potent inhibitors of a zinc bacterial collagenase. J. Med. Chem. 1994, 37, 2713–2720.CrossRefGoogle Scholar
  7. 7.
    Gross, M. L.; McCrery, D.; Crow, F.; Tomer, K. B.; Pope, M. R.; Cuifetti, L. M.; Knoch, H. W.; Daly, J. M.; Dunkle, L. D. The structure of the toxin from Helminthosporium carbonum. Tetrahedron. Lett. 1982, 23, 5381–5384.Google Scholar
  8. 8.
    Tomer, K. B.; Crow, F. W.; Gross, M. L. Fast atom bombardment combined with tandem mass spectrometry for the determination of cyclic peptides. Anal. Chem. 1984, 56, 880–886.CrossRefGoogle Scholar
  9. 9.
    Eckart, K.; Schwarz, H.; Tomer, K. B.; Gross, M. L. Tandem mass spectrometry methodology for the sequence determination of cyclic peptides J. Am. Chem. Soc. 1985, 107, 6765–6769.CrossRefGoogle Scholar
  10. 10.
    Eckart, K. Mass spectrometry of cyclic peptides. Mass Spectrom. Rev. 1994, 13, 23–55.CrossRefGoogle Scholar
  11. 11.
    Ngoka, L. C. M.; Gross, M. L. Location of sodium binding sites in endothelin A selective receptor antagonists cyclo (D-Trp-D-Asp-Pro-D-Val-Leu) and cyclo (D-Trp-D-Asp-Pro-D-Ile-Leu) by multistep collisionally-activated decomposition in an electrospray ion-trap mass spectrometer, in preparation.Google Scholar
  12. 12.
    Ngoka, L. C. M.; Gross, M. L.; Toogood, P. L. Sodium-directed selective cleavage of lactones: A method for structure determination of cyclodepsipeptides. Int. J. Mass Spectrom. Ion Processes 1999, 182/183, 289–298.Google Scholar
  13. 13.
    Bean, J. W.; Peishoff, C. E.; Kopple, K. D. Conformations of cyclic pentapeptide endothelin receptor antagonists. Int. J. Peptide Protein Res. 1994, 44, 223–232.CrossRefGoogle Scholar
  14. 14.
    Calcagni, A.; Kajtar-Peredy, M.; Lucente, G.; Luisi, G.; Pinnen, F.; Radics, L.; Rossi, D. Nine-membered cyclodepsitripeptides containing the retroisomeric sequence of ergot peptides. Int. J. Peptide Prot. Res. 1993, 42, 84–92.CrossRefGoogle Scholar
  15. 15.
    Coles, M.; Sowemimo, V.; Scanlon, D.; Munro, S. L.; Craik, D. J. A conformation study by 1H NMR of a cyclic pentapeptide antagonist of endothelin. J. Med. Chem. 1993, 36, 2658–2665.CrossRefGoogle Scholar
  16. 16.
    Fesik, S. W.; Bolis, G.; Sham, H. L.; Olejniczak, E. T. Structure refinement of a peptide from two-dimensional NMR data and molecular modeling. Biochemistry 1987, 26, 1851–1859.CrossRefGoogle Scholar
  17. 17.
    Kessler, H.; Klein, M.; Wagner, K. Peptide conformation. 48. Conformation and biological activity of proline containing cyclic retro-analogues of somatostatin. Int. J. Peptide Prot. Res. 1988, 31, 481–498.CrossRefGoogle Scholar
  18. 18.
    Mazzeo, M.; Isernia, C.; Rossi, F.; Saviano, M.; Pedone, C.; Paolillo, L.; Benedetti, E.; Pavone, V. Conformational behavior of a cyclolinopeptide A analogue: Two-dimentional NMR study of cyclo (Pro1-Pro-Phe-Phe-Ac6c-Ile-Ala-Val8). J. Peptide Sci. 1995, 1, 330–340.CrossRefGoogle Scholar
  19. 19.
    Saether, O.; Craik, D. J.; Campbell, I. D.; Sletten, K.; Juul, J.; Norman, D. G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 1995, 34, 4147–4158.CrossRefGoogle Scholar
  20. 20.
    Despeyroux, D.; Bordas-Nagy, J.; Jennings, K. R. Determination of amino acid sequence of cystine-containing peptides by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 156–159.CrossRefGoogle Scholar
  21. 21.
    Reinhold, V. N.; Sheeley, D. M. Detailed characterization of carbohydrate linkage and sequence in an ion trap mass spectrometer: Glycosphingolipids. Anal. Biochem. 1998, 259, 28–33.CrossRefGoogle Scholar
  22. 22.
    Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Characterization of oligosaccharide composition and structure quadrupole ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1493–1504.CrossRefGoogle Scholar
  23. 23.
    Nourse, B. D.; Cox, K. A.; Morand, K. L.; Cooks, R. G. Collisional activation of pyrene and anthracene in an ion-trap mass spectrometer, J. Am. Chem. Soc. 1992, 114, 2010–2016.CrossRefGoogle Scholar
  24. 24.
    Strife, R. J.; Ketcha, M. M.; Schwartz, J. Multi-stage mass spectrometry for the isolation and structure elucidation of components of a crude extract. J. Mass Spectrom. 1997, 32, 1226–1235.CrossRefGoogle Scholar
  25. 25.
    Gross, M. L. Tandem mass spectrometry: Multisector magnetic instruments. In Methods In Enzymology; McCloskey, J. A., Ed.; Academic: San Diego, 1990, Vol 193, pp 131–153.Google Scholar
  26. 26.
    Ngoka, L. C. M.; Gross, M. L. A nomenclature system for labeling cyclic peptide fragments. J. Am. Soc. Mass Spectrom. 1999, 10, 360–363.CrossRefGoogle Scholar
  27. 27.
    Yalcin, T.; Khouw, C.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. Why are B ions stable species in peptide spectra J. Am. Soc. Mass Spectrom. 1995, 6, 1165–1174.CrossRefGoogle Scholar
  28. 28.
    Biemann, K. Nomenclature for peptide fragment ions In Methods in Enzymology; McCluskey, J. A., Ed.; Academic: Orlando, 1990; Vol 193, pp 886–888.Google Scholar
  29. 29.
    Johnson, R. S.; Martin, S. A.; Biemann, K. Collision-induced fragmentation of (M + H)+ ions of peptides. Side chain specific sequence ions. Int. J. Mass Spectrom. Ion Processes 1988, 86, 137–154.CrossRefGoogle Scholar
  30. 30.
    Johnson, R. S.; Martin, S. A.; Biemann, K.; Stults, J. T.; Watson, J. T. Novel fragmentation process by collision-induced decomposition in a tandem mass spectrometer: Differentiation of leucine and isoleucine. Anal. Chem. 1987, 59, 2621–2625.CrossRefGoogle Scholar
  31. 31.
    Stults, J. S.; Watson, J. T. Identification of a new type of fragment ion in the collisional activation spectra of peptides allows leucine/isoleucine differentiation. Biomed. Environ. Mass Spectrom. 1987, 14, 583–586.CrossRefGoogle Scholar
  32. 32.
    Bojesen, G. The order of proton affinities of the 20 common L-alpha-amino acids. J. Am. Chem. Soc. 1987, 109, 5557–5558.CrossRefGoogle Scholar
  33. 33.
    Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Thermochemical determination by the kinetic method. Mass Spectrom. Rev. 1994, 13, 287–339.CrossRefGoogle Scholar
  34. 34.
    Gorman, G. S.; Speir, J. P.; Turner, C. A.; Amster, I. J. Proton affinities of the 20 common alpha-amino acids. J. Am. Chem. Soc. 1992, 114, 3986–3988.CrossRefGoogle Scholar
  35. 35.
    Eckart, K.; Schwarz, H. Sequencing of tentoxin by using fast-atom bombardment (FAB)/high resolution (HR)/tandem mass spectrometry (MSMS). Scope and limitation of a novel strategy. Helv. Chim. Acta 1987, 70, 489–498CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1999

Authors and Affiliations

  1. 1.Department of ChemistryWashington University in St. LouisSt. Louis

Personalised recommendations