Matrix-shimmed ion cyclotron resonance ion trap simultaneously optimized for excitation, detection, quadrupolar axialization, and trapping

  • George S. Jackson
  • Forest M. White
  • Shenheng Guan
  • Alan G. Marshall
Articles

Abstract

A different symmetry is required to optimize each of the three most common Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) electric potentials in a Penning (ICR) ion trap: one-dimensional dipolar ac for excitation (or detection), two-dimensional azimuthal quadrupolar ac excitation for ion axialization, and three-dimensional axial quadrupolar dc potential for ion axial confinement (trapping). Since no single trap shape simultaneously optimizes all three potentials, many trap configurations have been proposed to optimize the tradeoffs between the three requirements for a particular experiment. A more general approach is to divide each electrode into small segments and then apply the appropriate potential to each segment. Here, we extend segmentation to its logical extreme, by constructing a “matrix-shimmed” trap consisting of a cubic trap, with each side divided into a 5 × 5 grid of electrodes for a total of 150 electrodes. Theoretically, only 48 independent voltages need be applied to these 150 electrodes to generate all three desired electric potential fields simultaneously. In practice, it is more convenient to employ 63 independent voltages due to construction constraints. Resistive networks generate the potentials required for optimal quadrupolar trapping and quadrupolar excitation. To avoid resistive loss of excitation amplitude and detected signal, dipolar excitation/detection voltages are generated with a capacitive network. Theoretical Simion 6. 0 simulations confirm the achievement of near-ideal potentials of all three types simultaneously. From a proof-of-principle working model, several experimental benefits are demonstrated, and proposed future improvements are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lawrence, E. O.; Livingston, M. S. The Production of High Speed Light Ions without the Use of High Voltages. Phys. Rev. 1932, 40, 19–35.CrossRefGoogle Scholar
  2. 2.
    Brown, L. S.; Gabrielse, G. Geonium Theory. Physics of a Single Electron or Ion in a Penning Trap. Rev. Mod. Phys. 1986, 58, 233–311.CrossRefGoogle Scholar
  3. 3.
    Guan, S.; Marshall, A. G. Ion Traps for FT-ICR/MS: Principles and Design of Geometric and Electric Configurations. Int. J. Mass Spectrom. Ion Processes 1995, 146/147, 261–296.CrossRefGoogle Scholar
  4. 4.
    Vartanian, V. H.; Anderson, J. S.; Laude, D. A. Advances in Trapped Ion Cells for FTICRMS. Mass Spectrom. Rev. 1995, 14, 1–19.CrossRefGoogle Scholar
  5. 5.
    Beu, S. C.; Laude, D. A. Jr., Open trapped ion cell geometries for FT/ICR/MS. Int. J. Mass Spectrom. Ion Proc. 1992, 112, 215–230.CrossRefGoogle Scholar
  6. 6.
    Vartanian, V. H.; Laude, D. A. Simultaneous Trapping of Positive and Negative Ions Using a Nested Open-Ended Trapped-Ion Cell in FTICR. Organic Mass Spectrom. 29, 1994, 692–694.CrossRefGoogle Scholar
  7. 7.
    Beu, S. C.; Laude, D. A. Jr., Elimination of Axial Ejection during Excitation with a Capacitively Coupled Open Trapped-Ion Cell for FTICRMS. Anal. Chem. 1992, 64, 177–180.CrossRefGoogle Scholar
  8. 8.
    Caravatti, P.; Allemann, M. RF Shim by Trap Segmentation. Organic Mass Spectrom. 1991, 26, 514–518.CrossRefGoogle Scholar
  9. 9.
    Hanson, C. D.; Castro, M. E.; Kerley, E. L.; Russell, D. H. RF-Shimmed Trap, hemispherical end caps. Anal. Chem. 1990, 62, 520–526.CrossRefGoogle Scholar
  10. 10.
    Wang, M.; Marshall, A. G. A ‘Screened’ Electrostatic Ion Trap for Enhanced Mass Resolution, Mass Accuracy, Reproducibility, and Upper Mass Limit in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1989, 61, 1288–1293.CrossRefGoogle Scholar
  11. 11.
    Chen, R.; Marshall, A. G. An Off-Center Cubic Ion Trap for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes. 1994, 133, 29–38.CrossRefGoogle Scholar
  12. 12.
    Marto, J. A.; Schweikhard, L.; Marshall, A. G. A two-electrode ion trap for FTICR Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes. 1994, 137, 9–30.CrossRefGoogle Scholar
  13. 13.
    Wang, M.; Ledford, Jr., E. B.; Marshall, A. G. Experimental evaluation of a hyperbolic trapped-ion cell for FT/ICR mass spectrometry, in FACSS XIV; Federation of Analytical Chemistry and Spectroscopy Societies: Detroit, MI, 1987; p 43.Google Scholar
  14. 14.
    Grosshans, P. B.; Chen, R.; Marshall, A. G. Linear excitation and detection in FT/ICR/MS. Int. J. Mass Spectrom. Ion Processes 1994, 139, 169–189.CrossRefGoogle Scholar
  15. 15.
    Lee, S. H.; Wanczek, K.-P.; Hartmann, H. A New Cylindrical Trapped Ion ICR Cell. Adv. Mass Spectrom. 1980, 8B, 1645–1649.Google Scholar
  16. 16.
    Naito, Y.; Fujiwara, M.; Inoue, M. Improvement of the electric field in the cylindrical trapped-ion cell. Int. J. Mass Spectrom. Ion Phys. 1992, 120, 179–192.CrossRefGoogle Scholar
  17. 17.
    Rempel, D. L.; Grese, R. P.; Gross, M. L. A scaling technique for studying the dynamics of high mass ions in FTMS: A preliminary report. Int. J. Mass Spectrom. Ion Processes. 1990, 100, 381–395.CrossRefGoogle Scholar
  18. 18.
    Gorshkov, M. V.; Guan, S.; Marshall, A. G. Dynamic Ion Trapping for FT/ICR/MS: Simultaneous Positive and Negative Ion Detection. Rapid Commun. Mass Spectrom. 1992, 6, 166–172.CrossRefGoogle Scholar
  19. 19.
    Rempel, D. L.; Gross, M. L. High Pressure Trapping in FTMS: A Radiofrequency-Only Mode Event. J. Am. Soc. Mass Spectrom. 1992, 3, 590–594.CrossRefGoogle Scholar
  20. 20.
    Hunter, R. L.; Sherman, M. G.; McIver, R. T. Jr., Elongated Trap; z-ejection of electrons. Int. J. Mass Spectrom. Ion Phys. 1983, 50, 259–274.CrossRefGoogle Scholar
  21. 21.
    Wang, M.; Marshall, A. G. Elimination of z-ejection in FT/ICR mass spectrometry by radiofrequency electric field shimming. Anal. Chem. 1990, 62, 515–520.CrossRefGoogle Scholar
  22. 22.
    Knobeler, M.; Wanczek, K. P. Shimming electric field in an ICR ion trap. Int. J. Mass Spectrom. Ion Processes. 1993, 125, 127.CrossRefGoogle Scholar
  23. 23.
    Guan, S.; Huang, Y.; Marshall, A. G. Linearized dipolar excitation and detection and quadrupolarized axialization in a cylindrical ion cyclotron resonance ion trap. J. Mass Spectrom. 1995, 30, 1593–1598.CrossRefGoogle Scholar
  24. 24.
    Sommer, H.; Thomas, H. A.; Hiopple, J. A. The measurement of e/M by cyclotron resonance. Phys. Rev. 1951, 82, 697–702.CrossRefGoogle Scholar
  25. 25.
    Grosshans, P. B.; Shields, P. J.; Marshall, A. G. Comprehensive Theory of the Fourier Transform Ion Cyclotron Resonance Signal for All Ion Trap Geometries. J. Chem. Phys. 1991, 94, 5341–5352.CrossRefGoogle Scholar
  26. 26.
    Sharp, T. E.; Eyler, J. R.; Li, E. Electrostatic potential for an orthorhombic ion trap. Int. J. Mass Spectrom. Ion Phys. 1972, 9, 421–439.CrossRefGoogle Scholar
  27. 27.
    Rempel, D. L.; Huang, S. K.; Gross, M. L. Relation of Signal Sensitivity and Ion z-motion in Cubic Cells. Theory and Implication for Ion Kinetic Studies. Int. J. Mass Spectrom. Ion Processes. 1986, 70, 163–184.CrossRefGoogle Scholar
  28. 28.
    Jackson, G.; Canterbury, J. D.; Guan, S.; Marshall, A. G. Linearity and Quadrupolarity of Tetragonal and Cyclindrical Penning Traps of Arbitary Length-to-Width Ratio. J. Am. Soc. Mass Spectrom. 1997, 8, 283–293.CrossRefGoogle Scholar
  29. 29.
    Kofel, P.; Allemann, M.; Kellerhals, H.; Wanczek, K.-P. Coupling of axial and radial motions in ICR cells during excitation. Int. J. Mass Spectrom. Ion Processes. 1986, 74, 1–12.CrossRefGoogle Scholar
  30. 30.
    Dahl, D. A.; Delmore, J. E. “SIMION 3D Version 6. 0,” Idaho National Engineering Laboratory, P. O. Box 2726, Idaho Falls, ID 83403, 1988.Google Scholar
  31. 31.
    Mitchell, D. W.; Hearn, B. A.; DeLong, S. E. Excitation electric field inhomogeneities in a cubic ICR cell: ion motion far away from the cyclotron frequency. Int. J. Mass Spectrom. Ion Processes. 1993, 125, 95–126.CrossRefGoogle Scholar
  32. 32.
    van der Hart, W. J.; van de Guchte, W. J. z-ejection. Int. J. Mass Spectrom. Ion Processes. 1988, 82, 17–31.CrossRefGoogle Scholar
  33. 33.
    Huang, S. K.; Rempel, D. L.; Gross, M. L. Mass-dependent z-excitation of ions in cubic traps used in FTMS. Int. J. Mass Spectrom. Ion Processes. 1986, 72, 15–31.CrossRefGoogle Scholar
  34. 34.
    Mitchell, D.; Delong, S.; Cherniak, D.; Harrison, M. z-axis Oscillation Sidebands in FT/ICR Mass Spectra. Int. J. Mass Spectrom. Ion Processes. 1989, 91, 273–282.CrossRefGoogle Scholar
  35. 35.
    Marshall, A. G.; Grosshans, P. B. “Fourier transform ion cyclotron resonance mass spectrometry: The teenage years. Anal. Chem. 1991, 63, 215A-229A.CrossRefGoogle Scholar
  36. 36.
    Grosshans, P. B.; Marshall, A. G. Can Fourier Transform Mass Spectral Resolution be Improved by Detection at Harmonic Multiples of the Fundamental Ion Cyclotron Orbital Frequency? Int. J. Mass Spectrom. Ion Processes. 1991, 107, 49–81.CrossRefGoogle Scholar
  37. 37.
    Nikolaev, E. N.; Gorshkov, M. V.; Mordehai, A. V.; Talrose, V. L. ICR Signal Detection at Multiples of the Cyclotron Frequency. Rapid Commun. Mass Spectrom. 1990, 4, 144–146.CrossRefGoogle Scholar
  38. 38.
    Pan, Y. P.; Ridge, D. P.; Rockwood, A. L. Harmonic Enhancement in ICR. Int. J. Mass Spectrom. Ion Processes. 1988, 84, 293.CrossRefGoogle Scholar
  39. 39.
    Pan, Y. P.; Ridge, D. P.; Wronka, J.; Rockwood, A. L. Multiple-point model for Harmonic Enhancement. Rapid Commun. Mass Spectrom. 1987, 1, 121.CrossRefGoogle Scholar
  40. 40.
    Limbach, P. A.; Grosshans, P. B.; Marshall, A. G. Harmonic Enhancement of a Detected ICR Signal by Use of Segmented Detection Electrodes. Int. J. Mass Spectrom. Ion Processes. 1993, 123, 41–47.CrossRefGoogle Scholar
  41. 41.
    Guan, S.; Kim, H. S.; Marshall, A. G.; Wahl, M. C.; Wood, T. D.; Xiang, X. Shrink-Wrapping an Ion Cloud for Higher-Performance Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Chem. Rev. 1994, 94, 2161–2182.CrossRefGoogle Scholar
  42. 42.
    Hendrickson, C. L.; Drader, J. J.; Laude, D. A. Jr., Simplified Application of Quadrupolar Excitation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 448–452.CrossRefGoogle Scholar
  43. 43.
    Jackson, G. S.; Hendrickson, C. L.; Reinhold, B. B.; Marshall, A. G. Two-plate vs. four-plate azimuthal quadrupolar excitation for FT-ICR mass spectrometry. Int. J. Mass Spectrom. Ion Processes. 1997, 165/166, 327–338.CrossRefGoogle Scholar
  44. 44.
    Ledford, E. B. Jr.; Rempel, D. L.; Gross, M. L. Space Charge Effects in Fourier Transform Mass Spectrometry. Mass Calibration. Anal. Chem. 1984, 56, 2744–2748.CrossRefGoogle Scholar
  45. 45.
    Yin, W. W.; Wang, M.; Marshall, A. G.; Ledford, E. B., Jr., Experimental evaluation of a hyperbolic ion trap for FT/ICR/MS. J. Am. Soc. Mass Spectrom. 1992, 3, 188–197.CrossRefGoogle Scholar
  46. 46.
    Senko, M. W.; Canterbury, J. D.; Guan, S.; Marshall, A. G. A High-Performance Modular Data System for FT-ICR Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1839–1844.CrossRefGoogle Scholar
  47. 47.
    Limbach, P. A.; Grosshans, P. B.; Marshall, A. G. Experimental Determination of the Number of Trapped Ions, Detection Limit, and Dynamic Range in FT/ICR/MS. Anal. Chem. 1993, 65, 135–140.CrossRefGoogle Scholar
  48. 48.
    Grosshans, P. B.; Marshall, A. G. Theory of Ion Cyclotron Resonance Mass Spectrometry: Resonant Excitation and Radial Ejection in Orthorhombic and Cylindrical Ion Traps. Int. J. Mass Spectrom. Ion Processes. 1990, 100, 347–379.CrossRefGoogle Scholar
  49. 49.
    Mitchell, D. W.; Smith, R. D. Two-Dimensional Many Particle Simulation of Trapped Ions. Int. J. Mass Spectrom. Ion Processes. 1997, 165/166, 291–297.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1999

Authors and Affiliations

  • George S. Jackson
    • 1
  • Forest M. White
    • 1
  • Shenheng Guan
    • 1
  • Alan G. Marshall
    • 1
  1. 1.Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field LaboratoryFlorida State UniversityTallahassee
  2. 2.Department of ChemistryUniversity of VirginiaCharlottesville
  3. 3.Department of ChemistryUniversity of New MexicoAlbuquerque
  4. 4.Symyx TechnologySunnyvale

Personalised recommendations