Journal of the American Society for Mass Spectrometry

, Volume 10, Issue 9, pp 878–882

Charge inversion as a structural probe for C6H5+ and C6H6 cations

  • Detlef Schröder
  • Katrin Schroeter
  • Waltraud Zummack
  • Helmut Schwarz
Article

Abstract

Charge reversal (+CR) of cations to anions can be used to structurally differentiate isomeric C6H5+ and C6H6 hydrocarbon ions by means of tandem mass spectrometry. In view of the manifold of possible isomers, only a few prototype precursors are examined. Thus, charge inversion demonstrates that electron ionization of 2,4-hexadiyne yields an intact molecular ion, whereas the charge inversion spectra of C6H6 obtained from benzene, 1,5-hexadiyne, and fulvene are identical within experimental error. Similarly, the +CR spectrum of the C6H5+ cation generated by dissociative ionization of 2,4-hexadiyne is significantly different from the +CR spectrum of C6H5+ obtained from iodobenzene, suggesting the formation of a 2,4-hexadiynyl cation from the former precursor. Although charge inversion of cations to anions has a low efficiency and requires large precursor ion fluxes, the particular value of this method is that the spectra may not just differ in fragment ion intensities, but these differences can directly be related to the underlying ion structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenstock, H. M.; Dannacher, J.; Liebman, J. F. Radiat. Phys. Chem. 1982, 20, 7.Google Scholar
  2. 2.
    Kuck, D. Mass Spectrom. Rev. 1990, 9, 187.CrossRefGoogle Scholar
  3. 3.
    Baer, T.; Willett, G. D.; Smith, D.; Philips, J. S. J. Chem. Phys. 1979, 70, 4076.CrossRefGoogle Scholar
  4. 4.
    Neusser, H. J.; Schlag, E. W. Angew. Chem. 1992, 104, 269;CrossRefGoogle Scholar
  5. 4.(a)
    Angew. Chem., Int. Ed. Engl. 1992, 31, 263.Google Scholar
  6. 5.
    Miller, D. L.; Gross, M. L. J. Am. Chem. Soc. 1983, 105, 4239.CrossRefGoogle Scholar
  7. 6.
    Hayward, M. J.; Mabud, Md. A.; Cooks, R. G. J. Am. Chem. Soc. 1988, 110, 1343.CrossRefGoogle Scholar
  8. 7.
    Vekéy, K. Mass Spectrom. Rev. 1995, 14, 195.CrossRefGoogle Scholar
  9. 8.
    Holmes, J. L.; Mommers, A. A.; Terlouw, J. K.; Hop, C. E. C. A. Int. J. Mass Spectrom. Ion Processes 1986, 68, 249.CrossRefGoogle Scholar
  10. 9.
    van der Hart, W. J. J. Am. Soc. Mass Spectrom. 1995, 6, 513.CrossRefGoogle Scholar
  11. 10.
    van der Hart, W. J. J. Am. Soc. Mass Spectrom. 1996, 7, 731.Google Scholar
  12. 11.
    van der Hart, W. J. J. Am. Soc. Mass Spectrom. 1997, 8, 594, 599.CrossRefGoogle Scholar
  13. 12.
    van der Hart, W. J. Int. J. Mass Spectrom. Ion Processes 1998, 176, 23.Google Scholar
  14. 13.
    Schröder, D.; Oref, I.; Hrušák, J.; Weiske, T.; Nikitin, E. E.; Zummack, W.; Schwarz, H. J. Phys. Chem. A 1999, 103, 4609.CrossRefGoogle Scholar
  15. 14.
    Mason, R. S.; Milton, D. M. P.; Harris, F. J. Chem. Soc., Chem. Commun. 1987, 1453.Google Scholar
  16. 15.
    Hrušák, J.; Schröder, D.; Weiske, T.; Schwarz, H. J. Am. Chem. Soc. 1993, 115, 2015.CrossRefGoogle Scholar
  17. 16.
    Tkaczyk, M.; Harrison, A. G. Int. J. Mass Spectrom. Ion Processes 1994, 132, 73.CrossRefGoogle Scholar
  18. 17.
    Mason, R. S.; Parry, A. J.; Milton, D. M. P. J. Chem. Soc., Faraday Trans. 1994, 90, 1373.CrossRefGoogle Scholar
  19. 18.
    Eyler, J. R.; Campana, J. E. Int. J. Mass Spectrom. Ion Processes 1983/1984, 55, 171.CrossRefGoogle Scholar
  20. 19.
    Speranza, M.; Sefcik, M. D.; Henis, J. M. S.; Gaspar, P. P. J. Am. Chem. Soc. 1977, 99, 5583.CrossRefGoogle Scholar
  21. 20.
    Wesdemiotis, C.; McLafferty, F. W. Chem. Rev. 1987, 87, 485.CrossRefGoogle Scholar
  22. 21.
    McMahon, A. W.; Chowdhury, S. K.; Harrison, A. G. Org. Mass Spectrom. 1989, 24, 620.CrossRefGoogle Scholar
  23. 22.
    Polce, M. J.; Wesdemiotis, C. Rapid Commun. Mass Spectrom. 1996, 10, 235.CrossRefGoogle Scholar
  24. 23.
    Wesdemiotis, C.; Leyh, B.; Fura, A.; McLafferty, F. W. J. Am. Chem. Soc. 1990, 112, 8655.CrossRefGoogle Scholar
  25. 24.
    Schröder, D.; Schalley, C. A.; Goldberg, N.; Hrušák, J.; Schwarz, H. Chem. Eur. J. 1996, 2, 1235.CrossRefGoogle Scholar
  26. 25.
    Schalley, C. A.; Fiedler, A.; Friedrichs, H.; Hornung, G.; Wesendrup, R.; Schröder, D.; Schwarz, H. Chem. Eur. J. 1997, 3, 626.CrossRefGoogle Scholar
  27. 26.
    Feng, R.; Wesdemiotis, C.; Zhang, M.-Y.; Marchetti, M.; McLafferty, F. W. J. Am. Chem. Soc. 1989, 111, 1986.CrossRefGoogle Scholar
  28. 27.
    Zhang, M. Y.; Wesdemiotis, C.; Marchetti, M.; Danis, P. O.; Ray, J. C.; Carpenter, B. K.; McLafferty, F. W. J. Am. Chem. Soc. 1989, 111, 8341.CrossRefGoogle Scholar
  29. 28.
    Hayakawa, S.; Endoh, H.; Arakawa, K.; Morishita, N. Int. J. Mass Spectrom. Ion Processes 1997, 171, 209.CrossRefGoogle Scholar
  30. 29.
    Schroeter, K.; Schröder, D.; Schwarz, H. J. Phys. Chem. A 1999, 103, 4174.CrossRefGoogle Scholar
  31. 30.
    Drinkwater, D. E.; McLafferty, F. W. Org. Mass Spectrom. 1993, 28, 378.CrossRefGoogle Scholar
  32. 31.
    Srinivas, R.; Sülzle, D.; Weiske, T.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1991, 107, 368.CrossRefGoogle Scholar
  33. 32.
    Srinivas, R.; Sülzle, D.; Koch, W.; DePuy, C. H.; Schwarz, H. J. Am. Chem. Soc. 1991, 113, 5970.CrossRefGoogle Scholar
  34. 33.
    Schalley, C. A.; Schröder, D.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1996, 153, 173.CrossRefGoogle Scholar
  35. 34.
    Goldberg, N.; Schwarz, H. Acc. Chem. Res. 1994, 27, 347.CrossRefGoogle Scholar
  36. 35.
    Raphael, H.; Sondheimer, F. J. Chem. Soc. 1950, 120.Google Scholar
  37. 36.
    Sturm, E.; Hafner, K. Angew. Chem. 1964, 76, 862;CrossRefGoogle Scholar
  38. 36.(a)
    Angew. Chem., Int. Ed. Engl. 1964, 3, 749.Google Scholar
  39. 37.
    Nash, J. J.; Squires, R. R. J. Am. Chem. Soc. 1996, 118, 11872.CrossRefGoogle Scholar
  40. 38.
    Nicolaides, A.; Smith, D. M.; Jensen, F.; Radom, L. J. Am. Chem. Soc. 1997, 119, 8083.CrossRefGoogle Scholar
  41. 39.
    Van Orden, A.; Saykally, R. J. Chem. Rev. 1998, 98, 2313.CrossRefGoogle Scholar
  42. 40.
    Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. 1.Google Scholar
  43. 41.
    Mackay, G. I.; Böhme, D. K. Org. Mass Spectrom. 1980, 15, 593.CrossRefGoogle Scholar
  44. 42.
    Robinson, M. S.; Polak, M. L.; Bierbaum, V. M.; DePuy, C. H.; Lineberger, W. C. J. Am. Chem. Soc. 1995, 117, 6766.CrossRefGoogle Scholar
  45. 43.
    Russell, D. H.; Gross, M. L. J. Am. Chem. Soc. 1980, 102, 6279.CrossRefGoogle Scholar
  46. 44.
    Hrušák, J.; Schröder, D.; Iwata, S. J. Chem. Phys. 1997, 106, 7541.CrossRefGoogle Scholar
  47. 45.
    Harvey, J. N.; Aschi, M.; Schwarz, H.; Koch, W. Theor. Chem. Acc. 1998, 99, 95.Google Scholar
  48. 46.
    Wenthold, P. G.; Hu, J.; Squires, R. R. J. Am. Chem. Soc. 1996, 118, 11865.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1999

Authors and Affiliations

  • Detlef Schröder
    • 1
  • Katrin Schroeter
    • 1
  • Waltraud Zummack
    • 1
  • Helmut Schwarz
    • 1
  1. 1.Institut für Organische Chemie der Technischen Universität BerlinBerlinGermany

Personalised recommendations