Advertisement

Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument

  • Fong-Fu Hsu
  • John Turk
Articles

Abstract

We describe features of tandem mass spectra of lithiated adducts of triacylglycerol (TAG) species obtained by electrospray ionization mass spectrometry (ms) with low-energy collisionally activated dissociation (CAD) on a triple stage quadrupole instrument. The spectra distinguish isomeric triacylglycerol species and permit assignment of the mass of each fatty acid substituent and positions on the glycerol backbone to which substituents are esterified. Source CAD-MS2 experiments permit assignment of double bond locations in polyunsaturated fatty acid substituents. The ESI/MS/MS spectra contain [M+Li−(R n CO2H)]+, [M+Li−(R n CO2Li)]+, and R n CO+ ions, among others, that permit assignment of the masses of fatty acid substituents. Relative abundances of these ions reflect positions on the glycerol backbone to which substituents are esterified. The tandem spectra also contain ions reflecting combined elimination of two adjacent fatty acid residues, one of which is eliminated as a free fatty acid and the other as an α,β-unsaturated fatty acid. Such combined losses always involve the sn-2 substituent, and this feature provides a robust means to identify that substituent. Fragment ions reflecting combined losses of both sn-1 and sn-3 substituents without loss of the sn-2 substituent are not observed. Schemes are proposed to rationalize formation of major fragment ions in tandem mass spectra of lithiated TAG that are supported by studies with deuterium-labeled TAG and by source CAD-MS2 experiments. These schemes involve initial elimination of a free fatty acid in concert with a hydrogen atom abstracted from the α-methylene group of an adjacent fatty acid, followed by formation of a cyclic intermediate that decomposes to yield other characteristic fragment ions. Determination of double bond location in polyunsaturated fatty acid substituents of TAG is achieved by source CAD experiments in which dilithiated adducts of fatty acid substituents are produced in the ion source and subjected to CAD in the collision cell. Product ions are analyzed in the final quadrupole to yield information on double bond location.

Keywords

Tandem Mass Spectrum Collisionally Activate Dissocia Glycerol Backbone Lithium Salt Fatty Acid Substituent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shimabukuro, M.; Ohneda, M.; Lee, Y.; Unger, R. H. Role of nitric oxide in obesity-induced beta cell disease. J. Clin. Invest. 1997, 100, 290–295.CrossRefGoogle Scholar
  2. 2.
    Shimabukuor, M.; Koyami, K.; Lee, Y.; Unger, R. H. Leptin or troglitazone-induced lipopenia protects islets from interleukin 1β cytotoxicity. J. Clin. Invest. 1997, 100, 1750–1754.CrossRefGoogle Scholar
  3. 3.
    Koyama, K.; Chen, G.; Want, M.-Y.; Lee, Y.; Shimabukuor, M.; Newgard, C. B.; Unger, R. H. Beta cell function in normal rats made chronically hyperleptinemic by adenovirus-leptin gene therapy. Diabetes 1997, 46, 1276–1280.CrossRefGoogle Scholar
  4. 4.
    Chilton, F. H.; Murphy, R. C. Stimulated production and natural occurrence of 1,2-diarachidonoylglycerophosphocholine in human neutrophils. Biochem. Biophys. Res. Commun. 1987, 145, 1126–1133.CrossRefGoogle Scholar
  5. 5.
    Chen, Y.; Golay, A.; Swislocki, A. M.; Reaven, G. Resistance to insulin suppression of plasma free fatty acid concentrations and insulin stimulation of glucose uptake in non-insulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1987, 64, 17–27.CrossRefGoogle Scholar
  6. 6.
    Golay, A.; Swislocki, A. L. M.; Chen, Y.; Reaven, G. M. Relationships between plasma free fatty acid concentration, endogenous glucose production, and fasting hyperglycemia in normal and non-insulin-dependent diabetes mellitus. Metabolism 1987, 36, 392–402.CrossRefGoogle Scholar
  7. 7.
    Ramanadham, S.; Hsu, F.-F.; Bohrer, A.; Nowatzke, W.; Ma, Z.; Turk, J. Electrospray ionization mass spectrometric analysis of phospholipids from rat and human pancreatic islets and subcellular membranes. Comparison to other tissues and implications for membrane fusion in insulin exocytosis. Biochemistry 1998, 37, 4533–4567.CrossRefGoogle Scholar
  8. 8.
    Hsu, F.-F.; Bohrer, A.; Turk, J. Electrospray ionization tandem mass spectrometric analysis of sulfatide. Determination of fragmentation patterns and characterization of molecular species expressed in brain and in pancreatic islets. Biochim. Biophys. Acta 1998, 1392, 202–216.Google Scholar
  9. 9.
    Murphy, R. C. Mass Spectrometry of Lipids. In Handbook of Lipid Research; Snyder, F., Ed.; Plenum: New York, 1993; Vol. 7, pp 213–243.Google Scholar
  10. 10.
    Demirbuker, M.; Blomberg, L. G.; Olsson, N. U.; Bergqvist, M.; Herslof, B. G.; Jacobs, F. A. Characterization of triacylglycerols in the seeds of Aquilegia vulgaris by chromatographic and mass spectrometric methods. Lipids 1992, 27, 436–441.CrossRefGoogle Scholar
  11. 11.
    Kallio, H.; Laasko, P.; Huopalathi, R.; Linko, R. R.; Oksman, P. Analysis of butter fat triacylglycerols by supercritical fluid chromatography/electron impact mass spectrometry. Anal. Chem. 1989, 61, 698–700.CrossRefGoogle Scholar
  12. 12.
    Evershed, R. P.. High resolution triacylglycerol mixture analysis using high temperature gas chromatography mass spectrometry with a polarizable stationary phase, negative ion chemical ionization, and mass resolved chromatography. J. Am. Soc. Mass Spectrom. 1996, 7, 350–361.CrossRefGoogle Scholar
  13. 13.
    Manninen, P.; Laakso, P.; Kallio, H.. Separation of gamma and alpha linolenic acid containing triacylglycerols to capillary supercritical fluid chromatography. Lipids 1995, 30, 665–671.CrossRefGoogle Scholar
  14. 14.
    Manninen, P.; Laakso, P.; Kallio, H. Method for characterization of triacylglycerols and fat-soluble vitamins in edible oils and fats by supercritical fluid chromatography. J. Am. Oil Chem. Soc. 1995, 72, 1001–1008.CrossRefGoogle Scholar
  15. 15.
    Kallio, H.; Rua, P. Distribution of the major fatty acids of human milk between sn-2 and sn-1,3 positions of triacylglycerols. J. Am. Oil Chem. Soc. 1994, 71, 985–992.CrossRefGoogle Scholar
  16. 16.
    Cheung, M.; Young, A. B.; Harrison, A. G. O and OH chemical ionization of some fatty acid methyl esters and triacylglycerols. J. Am. Soc. Mass Spectrom. 1994, 5, 553–557.CrossRefGoogle Scholar
  17. 17.
    Laakso, P.; Kallio, H. Triacylglycerols of winter butterfat containing configurational isomers of monoenoic fatty acyl residues. II. Saturated dimonoenoic triacylglycerols. J. Am. Oil Chem. Soc. 1993, 70, 1173–1176.CrossRefGoogle Scholar
  18. 18.
    Laakso, P.; Kallio, H. Triacylglycerols of winter butterfat containing configurational isomers of monoenoic fatty acyl residues. I. Disaturated monoenoic triacylglycerols. J. Am. Oil Chem. Soc. 1993, 70, 1161–1171.CrossRefGoogle Scholar
  19. 19.
    Kallio, H.; Currie, G. Analysis of low erucic acid turnip rapeseed oils (Brassica campestris) by negative ion chemical ionization tandem mass spectrometry. A method giving information on the fatty acid composition in positions sn-2 and sn-1/3 of triacylglycerols. Lipids 1993, 28, 207–215.CrossRefGoogle Scholar
  20. 20.
    Currie, G.; Kallio, H. Triacylglycerols of human milk: rapid analysis by ammonia negative ion tandem mass spectrometry. Lipids 1993, 28, 217–222.CrossRefGoogle Scholar
  21. 21.
    Taylor, D. C.; Gibblin, E. M.; Reed, D. W.; Hogge, L. R.; Olson, D. J.; Mackenzie, S. L. Stereospecific analysis and mass spectrometry of triacylglycerols from arabidopsis thaliana (L.) Heynh. Columbia seed. J. Am. Oil Chem. Soc. 1995, 72, 305–308.CrossRefGoogle Scholar
  22. 22.
    Huang, A. S.; Delano, G. M.; Pidel, A.; Janes, L. E.; Softly, B. J.; Templeman, G. J. Characterization of triacylglycerols in saturated lipid mixtures with applications to SALATRIM 23CA. J. Agric. Food Chem. 1994, 42, 453–460.CrossRefGoogle Scholar
  23. 23.
    Huang, A. S.; Robinson, L. R.; Gursky, L. G.; Profita, R.; Sabidong, C. G. Identification and quantification of SALATRIM 23CA. J. Agric. Food Chem. 1994, 42, 468–473.CrossRefGoogle Scholar
  24. 24.
    Lehmann, W. D.; Kessler, M. Characterization and quantification of human plasma lipids from crude lipid extracts by field desorption mass spectrometry. Biol. Mass Spectrom. 1983, 10, 220–226.CrossRefGoogle Scholar
  25. 25.
    Evans, N.; Games, D. E.; Harwood, J. L.; Jackson, A. H. Field desorption mass spectrometry of triglycerides and phosphoglycerides. Biochem. Soc. Trans. 1974, 2, 1091–1092.Google Scholar
  26. 26.
    Laakso, P.; Kallio, H. Optimization of the mass spectrometric analysis of triacylglycerols using negative ion chemical ionization with ammonia. Lipids 1996, 31, 33–42.CrossRefGoogle Scholar
  27. 27.
    Stroobant, V.; Rozenberg, R.; el Monier, B.; Deffense, E.; de Hoffmann, E. Fragmentation of conjugate bases of esters derived from multifunctional alcohols including triacylglycerols. J. Am. Soc. Mass Spectrom. 1995, 6, 498–506.CrossRefGoogle Scholar
  28. 28.
    Anderson, M. A.; Collier, L.; Dillipane, R.; Ayorinde, F. O. Mass spectrometric characterization of venonia glamensis oil. J. Am. Oil Chem. Soc. 1993, 70, 905–908.CrossRefGoogle Scholar
  29. 29.
    Lamberto, M.; Saitta, M. Principal component analysis in fast atom bombardment-mass spectrometry of triacylglycerols in edible oils. J. Am. Oil Chem. Soc. 1995, 72, 867–871.CrossRefGoogle Scholar
  30. 30.
    Hori, M.; Sahashi, Y.; Koike, S.; Yamaoka, R.; Sago, M. Molecular species analysis of polyunsaturated fish triacylglycerols by high performance liquid chromatography/fast atom bombardment mass spectrometry. Anal. Sci. 1994, 10, 719–724.CrossRefGoogle Scholar
  31. 31.
    Evans, C.; Traldi, P.; Bambigiotti-Alberti, M.; Gianelli, v.; Coran, S. A.; Vincieri, F. F. Positive and negative fast atom bombardment mass spectrometry and collision spectroscopy in the structural characterization of mono-, di-, and triglycerides. Biol. Mass Spectrom. 1991, 20, 351–356.CrossRefGoogle Scholar
  32. 32.
    Sundin, P.; Larsson, P.; Wesen, C.; Odham, G. Chlorinated triacylglycerols in fish lipids. Chromatographic and mass spectrometric studies of model compounds. Biol. Mass Spectrom. 1992, 21, 633–641.CrossRefGoogle Scholar
  33. 33.
    Kim, H. Y.; Salem, N., Jr. Application of thermospray high performance liquid chromatography/mass spectrometry for the determination of phospholipids and related compounds. Anal. Chem. 1987, 59, 722–726.CrossRefGoogle Scholar
  34. 34.
    Duffin, K. L.; Henion, J. D.; Shieh, J. J. Electrospray and tandem mass spectrometric characterization of acylglycerol mixtures that are dissolved in nonpolar solvents. Anal. Chem. 1991, 63, 1781–1788.CrossRefGoogle Scholar
  35. 35.
    Cheng, C.; Gross, M. L.; Pittenauer, E. Complete structural elucidation of triacylglycerols by tandem sector mass spectrometry. Anal. Chem. 1998, 70, 4417–4426.CrossRefGoogle Scholar
  36. 36.
    Myher, J. J.; Kuksis, A.; Geher, K.; Park, P. W.; Diersen-Schede, D. A. Stereospecific analysis of triacylglycerols rich in long-chain polyunsaturated fatty acids. Lipids 1996, 31, 207–215.CrossRefGoogle Scholar
  37. 37.
    Pittenauer, E.; Aichinger, T.; de Hueber, K.; Bailer, J. Characterization of seed oils for potential technical use by HPLC. Proceedings of the 44th ASMS Conference on Mass Spectrometry and Allied Topics; Portland, OR, 1996; p 928.Google Scholar
  38. 38.
    Neff, W. E.; Byrdwell, W. C. Soybean oil triacylglycerol analysis by reversed phase high performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry. J. Am. Oil Chem. Soc. 1995, 72, 1185–1191.CrossRefGoogle Scholar
  39. 39.
    Byrdwell, W. C.; Emken, E. A. Analysis of triglycerides using atmospheric pressure chemical ionization mass spectrometry. Lipids 1995, 30, 173–175.CrossRefGoogle Scholar
  40. 40.
    Neff, W. E.; Byrdwell, W. C. Triacylglycerol analysis by high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry: Crepis alpina and Venonia galamensis seed oils. J. Liquid Chromatogr. 1995, 18, 4165–4181.CrossRefGoogle Scholar
  41. 41.
    Byrdwell, W. C.; Neff, W. E. Analysis of genetically modified canola varieties by atmospheric pressure chemical ionization mass spectrometric and flame ionization detection. J. Liquid Chromatogr. 1996, 18, 2203–2225.CrossRefGoogle Scholar
  42. 42.
    McIntyre, D.; Fisher, S. The characterization of di- and triglycerides in oils and fats by API LC/MS. Proceedings of the 44th ASMS Conference on Mass Spectrometry and Allied Topics; Portland, OR, 1996; p 289.Google Scholar
  43. 43.
    Byrdwell, W. C.; Emken, E. A.; Neff, W. E.; Odlof, R. O. Quantitative analysis of triacylglycerols using atmospheric pressure chemical ionization mass spectrometry. Lipids 1996, 31, 919–935.CrossRefGoogle Scholar
  44. 44.
    Mottram, H. R.; Evershed, R. P. Structure analysis of triacylglycerol positional isomers using atmospheric pressure chemical ionization mass spectrometry. Tetrahedron Lett 1996, 37, 8593–8596.CrossRefGoogle Scholar
  45. 45.
    Hsu, F.-F.; Bohrer, A.; Turk, J. Formation of lithiated adducts of glycerophosphocholine lipids facilitates their identification by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 516–526.CrossRefGoogle Scholar
  46. 46.
    Hsu, F.-F.; Turk, J. Distinction among isomeric unsaturated fatty acids as lithiated adducts by electrospray ionization mass spectrometry using low energy collisionally activated dissociation on a triple stage quadrupole instrument. J. Am. Soc. Mass Spectrom., submitted.Google Scholar
  47. 47.
    Han, X.; Gross, R. W. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 1202–1210.CrossRefGoogle Scholar
  48. 48.
    Adams, J.; Gross, M. L. Energy requirements for remote charge site ion decompositions and structural information from collisional activation of alkali metal cationized fatty alcohols. J. Am. Chem. Soc. 1986, 108, 6915–6922.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1999

Authors and Affiliations

  1. 1.Mass Spectrometry Resource, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineWashington University School of MedicineSt. LouisUSA

Personalised recommendations