Effects of salt concentration on analyte response using electrospray ionization mass spectrometry

  • Terri L. Constantopoulos
  • George S. Jackson
  • Christie G. Enke
Articles

Abstract

The effect of salt concentration on analyte response using electrospray ionization mass spectrometry (ESI-MS) was measured and compared to that predicted by Enke’s equilibrium partitioning model. The model predicts that analyte response will be proportional to concentration and that the response factor will decrease with increasing electrolyte concentration. The measured analyte response is proportional to concentration over four orders of magnitude when the electrolyte concentration is below 10−3 M, as the model predicts. The concentration of excess charge ([Q]) generated by the ESI process increases significantly at 10−3 M ionic concentration, but the response factor decreases at this concentration. Changes in shape of the spray that cause a loss of ion transmission efficiency may be the basis for the decrease in response. An increase in the analyte response factor with increasing electrolyte concentration is observed for electrolyte concentrations below 10−3 M. An explanation for this based on the electrical double layer is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Loo, J. A.; Loo, R. O. In Electrospray Ionization Mass Spectrometry; Cole, R. B., Ed.; Wiley: New York, 1997; pp 385–420.Google Scholar
  2. 2.
    Crain, P. F. In Electrospray Ionization Mass Spectrometry; Cole, R. B., Ed.; Wiley: New York, 1997; 421–548.Google Scholar
  3. 3.
    Ohasi, R. In Electrospray Ionization Mass Spectrometry; Cole, R. B., Ed.; Wiley: New York, 1997; 459–498.Google Scholar
  4. 4.
    Wilm, M.; Mann, M. Int. J. Mass Spectrom. Ion Processes 1994, 136, 167–180.CrossRefGoogle Scholar
  5. 5.
    Emmett, M. R.; Caprioli, R. M. J. Am. Soc. Mass Spectrom. 1994, 5, 605–613.CrossRefGoogle Scholar
  6. 6.
    Cheng, Z. L.; Siu, K. W. M.; Guevrement, R.; Berman, S. S. J. Am. Soc. Mass Spectrom. 1992, 3, 281.CrossRefGoogle Scholar
  7. 7.
    Gomez, A.; Tang, K. Phys. Fluids 1994, 6, 404.CrossRefGoogle Scholar
  8. 8.
    Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. J. Chem. Phys. 1968, 49, 2240–2249.CrossRefGoogle Scholar
  9. 9.
    Kebarle, P.; Ho, Y. In Electrospray Ionization Mass Spectrometry; Cole, R. B., Ed.; Wiley: New York, 1997; 3–64.Google Scholar
  10. 10.
    Iribarne, J. V.; Thompson, B. A. J. Chem. Phys. 1976, 64, 2287–2294.CrossRefGoogle Scholar
  11. 11.
    Tang, L.; Kebarle, P. Anal. Chem. 1991, 63, 2709–2715.CrossRefGoogle Scholar
  12. 12.
    Tang, L.; Kebarle, P. Anal. Chem. 1993, 65, 3654–3668.CrossRefGoogle Scholar
  13. 13.
    Enke, C. G. Anal. Chem. 1997, 69, 4885–4893.CrossRefGoogle Scholar
  14. 14.
    Kebarle, P.; Tang, L. Anal. Chem. 1993, 65, 972A-985A.CrossRefGoogle Scholar
  15. 15.
    Constantopoulos, T. L.; Jackson, G. S.; Enke, C. G. Anal. Chim. Acta, to be published.Google Scholar
  16. 16.
    Ikonomou, I. G.; Blades, A. T.; Kebarle, P. Anal. Chem. 1991, 63, 1989–1998.CrossRefGoogle Scholar
  17. 17.
    Smith, R. D.; Wahl, J. H.; Goodlett, D. R.; Hofstadler, J. A. Anal. Chem. 1993, 65, 574A-584A.CrossRefGoogle Scholar
  18. 18.
    Constantopoulos, T. L.; Enke, C. G. J. Am. Soc. Mass Spectrom, in preparation.Google Scholar
  19. 19.
    Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Wiley: New York, 1980.Google Scholar
  20. 20.
    Fernandez De La Mora, J. F.; Loscertales, I. G. J. Fluid Mech. 1994, 260, 155–184.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1999

Authors and Affiliations

  • Terri L. Constantopoulos
    • 1
  • George S. Jackson
    • 1
  • Christie G. Enke
    • 1
  1. 1.Department of ChemistryUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations