Automated mass spectrometry imaging with a matrix-assisted laser desorption ionization time-of-flight instrument

  • Markus Stoeckli
  • Terry B. Farmer
  • Richard M. Caprioli
Short Communication

Abstract

The automated use of a matrix-assisted laser desorption ionization (MALDI) mass spectrometer (MS) is described for image analysis of samples through implementation of new software for instrument control, data acquisition, and data analysis. The software permits automated acquisition of MS MALDI spectra to form an ordered data array and contains display features to provide images at one or more mass-to-charge ratio values. The technique can be used to scan tissue samples, blotted samples, gels, or other sample surfaces where the image analysis of that sample is required. The program achieves a time of typically 1 s per image point, permitting an analysis made up of large numbers of points with high spatial resolution up to 850 dpi. The features of the software are demonstrated in this paper with samples of printed images, where visible images can be compared to those obtained by mass spectrometry. Quantitative aspects are introduced by analyzing a series of sample spots containing different amounts of several proteins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Briggs, D.; Seah, M. P. Practical Surface Analysis; Wiley: New York, 1996, Vol. 2 367–424.Google Scholar
  2. 2.
    VanHoolst, W. K.; VanEspen, P. J. Image Processing in Secondary Ion Mass Spectrometry. Mikrochim. Acta 1991, 2, 415–425.CrossRefGoogle Scholar
  3. 3.
    Mony, M. C.; Larras-Regard, E. Imaging of subcellular structures by scanning ion microscopy and mass spectrometry. Biol. Cell. 1997, 89, 199–210.CrossRefGoogle Scholar
  4. 4.
    Colliver, T. L.; Brummel, C. L.; Pacholski, M. L.; Swanek, F. D.; Ewing, A. G.; Winograd, N. Atomic and molecular imaging at the single-cell level with TOF-SIMS. Anal. Chem. 1997, 69, 2225–2231.CrossRefGoogle Scholar
  5. 5.
    McMahon, J. M.; Short, R. T.; McCandlish, C. A.; Brenna, J. T.; Todd, P. J. Identification and mapping of phosphocholine in animal tissue by static secondary ion mass spectrometry and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 335–340.CrossRefGoogle Scholar
  6. 6.
    Van Vaeck, L.; Struyf, H.; Van Roy, W.; Adams, F. Organic and Inorganic Analysis with Laser Microprobe Mass Spectrometry Part 1: Instrumentation and Methodology. Mass Spec. Rev. 1994, 13, 189–208.CrossRefGoogle Scholar
  7. 7.
    Van Vaeck, L.; Struyf, H.; Van Roy, W.; Adams, F. Organic and Inorganic Analysis with Laser Microprobe Mass Spectrometry Part 2: Applications. Mass Spec. Rev. 1994, 13, 209–232.CrossRefGoogle Scholar
  8. 8.
    Van Vaeck, L.; Poels, K.; De Nollin, S.; Hachimi, A.; Gijbels, R. Laser microprobe mass spectrometry: principle and applications in biology and medicine. Cell Biol. Int. 1997, 21, 635–648.CrossRefGoogle Scholar
  9. 9.
    Iancu, T. C.; Perl, D. P.; Sternlieb, I.; Lerner, A.; Leshinsky, E.; Kolodny, E. H.; Hsu, A.; Good, P. F. The application of laser microprobe mass analysis to the study of biological material. Biometals 1996, 9, 57–65.CrossRefGoogle Scholar
  10. 10.
    Pestaner, J. P.; Mullick, F. G.; Centeno, J. A. Characterization of acetaminophen: molecular microanalysis with Raman microprobe spectroscopy. J. Forensic Sci. 1996, 41, 1060–1063.Google Scholar
  11. 11.
    Huber, M.; Spengler, B.; Kaufmann, R. Development of a new Scanning UV-Laser Microprobe for Ion Imaging and Confocal Microscopy. Proceedings of the 42nd ASMS Conference on Mass Spectrometry and Allied Topics; Chicago, Illinois, 1994; p 1044.Google Scholar
  12. 12.
    Caprioli, R. M.; Farmer, T. B.; Gile, J. Molecular Imaging of Biological Samples: Localization of Peptides and Proteins Using MALDI-TOF MS. Anal. Chem. 1997, 69, 4751–4760.CrossRefGoogle Scholar
  13. 13.
    Haiying, Z. Development of Combined Micro-Preparation, Separation and Mass Spectrometry Methods and Applications in the Microdialysis Study of Neuropeptides. Ph.D. Thesis, University of Texas Health Science Center, Houston, 1998.Google Scholar
  14. 14.
    Schreiner, M.; Strupat, K.; Lottspeich, F.; Eckerskorn, C. Ultraviolet matrix assisted laser desorption ionization-mass spectrometry of electroblotted proteins. Electrophoresis 1996, 17, 954–961.CrossRefGoogle Scholar
  15. 15.
    Stahl, B.; Linos, A.; Karas, M.; Hillenkamp, F. Setup M Analysis of fructans from higher plants by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 1997, 246, 195–204.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1999

Authors and Affiliations

  • Markus Stoeckli
    • 1
  • Terry B. Farmer
    • 1
  • Richard M. Caprioli
    • 1
  1. 1.Mass Spectrometry Research CenterVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations