Gas phase conformations of biological molecules: the hydrogen/deuterium exchange mechanism



A model was developed to describe the deuterium uptake of gas phase polypeptide ions via H/D exchange with D2O. Ab initio calculations established, for energetic reasons, that the exchange must take place via a “relay” mechanism involving both a charged site and a nearby basic site. Molecular dynamics simulations indicated that the D2O molecule did not penetrate the core of the example peptide, protonated bradykinin (Bk+H)+, and hence the relay mechanism must occur on the peptide surface. Two factors were deemed to be important: (1) The surface accessibility of the charged sites and the basic sites and (2) the distances between them. An algorithm was developed that accounted for these features using the absolute exchange rate as a free parameter. Excellent agreement was obtained with experiment when equal weight was given to an ensemble of low energy conformations of (Bk+H)+, assumed to have a salt bridge primary structure. Single conformations, or other protonated forms, did not allow good agreement with experiment for any value of the absolute exchange rate constant.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Monaghan, J. J.; Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Tyler, A. N. Org. Mass Spectrom. 1983, 18, 75, 1982, 17, 569, 1982, 17, 529.CrossRefGoogle Scholar
  2. 2.
    Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. 1991, 63, A1193.Google Scholar
  3. 3.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Mass Spectrom. Rev. 1990, 9, 37.CrossRefGoogle Scholar
  4. 4.
    Englander, S. W.; Kallenbach, N. R. Q. Rev. Biophys. 1983, 16, 521.CrossRefGoogle Scholar
  5. 4.(a)
    Smith, D. L.; Zhang, Z. Mass Spectrom. Rev. 1994, 13, 411.CrossRefGoogle Scholar
  6. 4.(b)
    Green, M. K. Lebrilla, C. B. Mass Spectrom. Rev. 1997, 16, 53.CrossRefGoogle Scholar
  7. 4.(c)
    Covey, T.; Douglas, D. J. J. Am. Soc. Mass Spectrom. 1993, 4, 616.CrossRefGoogle Scholar
  8. 4.(d)
    Cox, K. A.; Julian, R. K.; Cooks, R. G.; Kaiser, R. E. J. Am. Soc. Mass Spectrom. 1994, 5, 127.CrossRefGoogle Scholar
  9. 4.(e)
    Ganem, B.; Li, Y.-T.; Henion, J. D. J. Am. Chem. Soc. 1991, 113, 6294.CrossRefGoogle Scholar
  10. 4.(f)
    Cheng, X.; Chen, R.; Bruce, J. E.; Schwartz, B. L.; Anderson, G. A.; Hofstadler, S. A.; Gale, D. C.; Smith, R. D.; Gao, J.; Sigal, G. B.; Mammen, M.; Whitesides, G. M. J. Am. Chem. Soc. 1995, 117, 8859.CrossRefGoogle Scholar
  11. 4.(g)
    Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. J. Am. Chem. Soc. 1995, 117, 10141.CrossRefGoogle Scholar
  12. 4.(h)
    von Helden, G.; Wyttenbach, T.; Bowers, M. T. Science 1995, 267, 1483.CrossRefGoogle Scholar
  13. 4.(i)
    Sullivan, P. A.; Axelsson, J.; Altmann, S.; Quist, A. P.; Sunqvist, B. U. R.; Reimann, C. T. J. Am. Soc. Mass Spectrom. 1996, 7, 329.CrossRefGoogle Scholar
  14. 4.(j)
    Gross, D. S.; Williams, E. R. J. Am. Chem. Soc. 1995, 117, 883.CrossRefGoogle Scholar
  15. 4.(k)
    Kaltashov, I. A.; Fenselau, C. Proteins: Structure Function Genetics 1997, 27, 165.CrossRefGoogle Scholar
  16. 4.(l)
    Dongre, A. R.; Somogyi, A.; Wysocki, V. H. J. Mass Spectrom. 1996, 31, 339.CrossRefGoogle Scholar
  17. 5.
    Katta, V.; Chait, B. T. Rapid Commun. Mass Spectrom. 1991, 5, 214.CrossRefGoogle Scholar
  18. 5.(a)
    J. Am. Chem. Soc. 1993, 115, 6317.Google Scholar
  19. 5.(b)
    Smith, D. L.; Deng, Y.; Zhang, Z. J. Mass Spectrom. 1997, 32, 135.CrossRefGoogle Scholar
  20. 5.(c)
    Miranker, A.; Robinson, C. V.; Radford, S. E.; Aplin, R. T.; Dobson, C. M. Science 1993, 262, 896.CrossRefGoogle Scholar
  21. 5.(d)
    Johnson, R. S.; Walsh, K. A. Prot. Sci. 1994, 3, 2411.CrossRefGoogle Scholar
  22. 5.(e)
    Wagner, D. S.; Melton, L. G.; Yan, Y.; Erickson, B. W.; Anderegg, R. J. Protein Sci. 1994, 3, 1305.CrossRefGoogle Scholar
  23. 6.
    Winger, B. E.; Light-Wahl, K. J.; Rockwood, A. L.; Smith, R. D. J. Am. Chem. Soc. 1992, 114, 5897.CrossRefGoogle Scholar
  24. 6.(a)
    Cheng, X.; Fenselau, C. Int. J. Mass Spectrom. Ion Processes 1992, 122, 109.CrossRefGoogle Scholar
  25. 6.(b)
    Hemling, M. E.; Conboy, J. J.; Bean, M. F.; Mentzer, M.; Carr, S. A. J. Am. Soc. Mass Spectrom. 1994, 5, 434.CrossRefGoogle Scholar
  26. 6.(c)
    Wood, T. D.; Chorush, R. A.; Wampler, F. M., III; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA 1995, 92, 2451.CrossRefGoogle Scholar
  27. 6.(d)
    Clemmer, D. E.; Valentine, S. J. J. Am. Chem. Soc. 1997, 119, 3558.CrossRefGoogle Scholar
  28. 6.(e)
    Zhang, X; Ewing, N; Cassady C. J. Int. J. Mass Spectrom. Ion Processes, submitted.Google Scholar
  29. 7.
    Kemper, P. R.; Bowers, M. T. J. Phys. Chem. 1991, 95, 5134.CrossRefGoogle Scholar
  30. 8.
    Wyttenbach, T.; von Helden, G.; Bowers, M. T. J. Am. Chem. Soc. 1996, 118, 8355.CrossRefGoogle Scholar
  31. 9.
    Zhang, Z.; Li, W.; Guan, S.; Marshall, A. G. Proceedings of the 44th ASMS Conference on Mass Spectrometry and Allied Topics; Portland, OR, 1996; p 1061.Google Scholar
  32. 10.
    Guan, S.; Kim, H. S.; Marshall, A. G.; Wahl, M. C.; Wood, T. D.; Xiang, X. Chem. Rev. 1994, 94, 2161.CrossRefGoogle Scholar
  33. 11.
    Recent results obtained at the National High Magnetic Field Laboratory in Florida indicate that thermal (300 K) protonated bradykinin exposed to 10−5 torr D2O vapor does not exchange any hydrogens at all during the course of a 1 h experiment. Although this result is obtained under more controlled experimental conditions than those reported here, it is of course useless for obtaining any structural information or testing an H/D exchange model. Freitas, M. A.; Marshall, A. G., private communication.Google Scholar
  34. 12.
    Schnier, P. D.; Price, W. D.; Jokusch, R. A.; Williams, E. R. J. Am. Chem. Soc. 1996, 118, 7178.CrossRefGoogle Scholar
  35. 13.
    Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. J. Am. Chem. Soc. 1995, 117, 12840.CrossRefGoogle Scholar
  36. 14.
    Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209.CrossRefGoogle Scholar
  37. 15.
    Becke, A. D. J. Chem. Phys. 1993, 98, 5648.CrossRefGoogle Scholar
  38. 16.
    Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comp. Chem. 1993, 14, 1347.CrossRefGoogle Scholar
  39. 17.
    gaussian 94, Revision C. 2, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Jonson, B. G.; Robb, M. A.; Cheesman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. F.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; gonzalez, C.; Pople, J. A.; Gaussian, Inc., Pittsburgh PA, 1995.Google Scholar
  40. 18.
    Pearlman, D. A.; Case, D. A.; Caldwell, J. C.; Seibel, G. L.; Singh, U. C.; Weiner, P.; Kollman, P. A. amber 4. 0, Unversity of California, San Francisco.Google Scholar
  41. 19.
    The dielectric constant is often chosen to be proportional to 1/r implying that the potential energy between two charges q 1 and q 2 separated by r is E POT(r) α q 1 q 2/r 2. See, e. g., [18].Google Scholar
  42. 20.
    von Helden, G.; Wyttenbach, T.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1995, 146/147, 349.CrossRefGoogle Scholar
  43. 20.(a)
    Lee, S.; Wyttenbach, T.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1997, 167, 605.CrossRefGoogle Scholar
  44. 20.(b)
    Wyttenbach, T.; Bushnell, J. E.; Bowers, M. T. J. Am. Chem. Soc. 1998, 120, 5098.CrossRefGoogle Scholar
  45. 20.(c)
    Gidden, J.; Jackson, A. T.; Sceivens, J. H.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes, submitted.Google Scholar
  46. 21.
    On the basis of results reported in [12] simulations have been carried out on salt bridge structures arg1H+-arg9H+-COO.Google Scholar
  47. 22.
    Gard, E.; Green, M. K.; Bregar, J.; Lebrilla, C. B. J. Am. Soc. Mass Spectrom. 1994, 5, 623.CrossRefGoogle Scholar
  48. 23.
    Marshall, A. G.; Zhang, Z., private communication.Google Scholar
  49. 24.
    In order to determine the deuterium incorporation as shown in Figure 3 and deconvolute the mass spectra from the 12C/13C isotope distributions the maximum entropy method has been applied: Zhan, Z.; Guan, S.; Marshall, A. G. J. Am. Soc. Mass Spectrom. 1997, 8, 659.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1999

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations