Advertisement

Blackbody infrared radiative dissociation of oligonucleotide anions

  • John S. Klassen
  • Paul D. Schnier
  • Evan R. Williams
Articles

Abstract

The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [d(A) 7 2− , d(AATTAAT)2−, d(TTAATTA)2−, and d(CCGGCCG)2−] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5′) phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A) 7 2− , d(AATTAAT)2−, and d(TTAATTA)2− has an average activation energy (E a ) of ∼1.0 eV and a preexponential factor (A) of 1010 s−1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2−. The average Arrhenius parameters for the loss of cytosine and guanine are E a =1.32 ± 0.03 eV and A=1013.3±0.3 s−1. No loss of thymine was observed for mixed adenine-thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T) 7 2− over a 600 s reaction delay at 207 °C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors ≤1013 s−1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction.

Keywords

Arrhenius Parameter Dissociation Rate Constant Base Loss Reaction Delay Oligonucleotide Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.(a)
    Yager, T. D.; Zewert, T. E.; Hood, L. E. Acc. Chem. Res. 1994, 27, 94–100.CrossRefGoogle Scholar
  2. 1.(b)
    Proteome Research: New Frontiers in Functional Genomics; Wilkins, M. R.; Williams, K. L.; Appel, R. D.; Hochstrasser, D. F., Eds.; Springer: Berlin, 1997.Google Scholar
  3. 2.
    Laird, P. W.; Jackson-Grusby, L.; Fazeli, A.; Dickinson, S. L.; Jung, W. E.; Li, E.; Weinberg, R. A.; Jaenisch, R. Cell 1995, 81, 197–205.CrossRefGoogle Scholar
  4. 3.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  5. 4.
    Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. 1991, 63, 1193A-1202A.CrossRefGoogle Scholar
  6. 5.
    Little, D. P.; Aaserud, D. J.; Valaskovic, G. A.; McLafferty, F. W. J. Am. Chem. Soc. 1996, 118, 9352–9359.CrossRefGoogle Scholar
  7. 6.
    Ni, J.; Pomerantz, S. C.; Rozenski, J.; Zhang, Y.; McCloskey, J. A. Anal. Chem. 1996, 68, 1989–1999.CrossRefGoogle Scholar
  8. 7.
    McLuckey, S. A.; Van Berkel, G. J.; Glish, G. L. J. Am. Soc. Mass Spectrom. 1992, 3, 60–70.CrossRefGoogle Scholar
  9. 8.
    McLuckey, S. A.; Habibi-Goudarzi, S. J. Am. Chem. Soc. 1993, 115, 12085–12095.CrossRefGoogle Scholar
  10. 9.
    McLuckey, S. A.; Vaidyanathan, G.; Habibi-Goudarzi, S. J. Mass Spectrom. 1995, 30, 1222–1229.CrossRefGoogle Scholar
  11. 10.
    Habibi-Goudarzi, S.; McLuckey, S. A. J. Am. Soc. Mass Spectrom. 1995, 6, 102–113.CrossRefGoogle Scholar
  12. 11.
    McLuckey, S. A.; Vaidyanathan, G. Int. J. Mass Spectrom. Ion Processes 1997, 162, 1–16.CrossRefGoogle Scholar
  13. 12.
    Little, D. P.; Chorush, R. A.; Spier, J. P.; Senko, M. W.; Kelleher, N. L.; McLafferty, F. W. J. Am. Chem. Soc. 1994, 116, 4893–4897.CrossRefGoogle Scholar
  14. 13.
    Little, D. P.; McLafferty, F. W. J. Am. Chem. Soc. 1995, 117, 6783–6784.CrossRefGoogle Scholar
  15. 14.
    Rodgers, M. T.; Campbell, S.; Marzluff, E. M.; Beauchamp, J. L. Int. J. Mass Spectrom. Ion Processes 1994, 137, 121–149.CrossRefGoogle Scholar
  16. 15.
    Barry, J. P.; Vouros, P.; Schepdael, A. V.; Law, S. Y. J. Mass Spectrom. 1995, 30, 993–1006.CrossRefGoogle Scholar
  17. 16.
    Bartlett, M. G.; McCloskey, J. A.; Manalili, S.; Griffey, R. H. J. Mass Spectrom. 1996, 31, 1277–1283.CrossRefGoogle Scholar
  18. 17.
    Phillips, D. R.; McCloskey, J. A. Int. J. Mass Spectrom. Ion Processes 1993, 128, 61–82.CrossRefGoogle Scholar
  19. 18.
    McLuckey, S. A.; Goeringer, D. E. J. Mass Spectrom. 1997, 32, 461–474.CrossRefGoogle Scholar
  20. 19.
    Zhu, L.; Parr, G. R.; Fitzgerald, M. C.; Nelson, C. M.; Smith, L. M. J. Am. Chem. Soc. 1995, 117, 6048–6056.CrossRefGoogle Scholar
  21. 20.
    Greco, F.; Lugiori, A.; Sidona, G.; Uccella, N. J. Am. Chem. Soc. 1990, 112, 9092–9096.CrossRefGoogle Scholar
  22. 21.(a)
    Price, W. D.; Schnier, P. D.; Williams, E. R. Anal. Chem. 1996, 68, 859–866.CrossRefGoogle Scholar
  23. 21.(b)
    Tholmann, D.; Tonner, D. S.; McMahon, T. B. J. Phys. Chem. 1994, 98, 2002–2004.CrossRefGoogle Scholar
  24. 21.(c)
    Dunbar, R. C.; McMahon, T. B.; Tholmann, D.; Tonner, S. C.; Salahub, D. R.; Wei, D. J. Am. Chem. Soc. 1995, 117, 12819–12825.CrossRefGoogle Scholar
  25. 22.(a)
    Price, W. D.; Schnier, P. D.; Jockusch, R. A.; Strittmatter, E. F.; Williams, E. R. J. Am. Chem. Soc. 1996, 118, 10640–10644.CrossRefGoogle Scholar
  26. 22.(b)
    Price, W. D.; Williams, E. R. J. Phys. Chem. A 1997, 101, 8844–8852.CrossRefGoogle Scholar
  27. 23.(a)
    Price, W. D.; Jockusch, R. A.; Williams, E. R. J. Am. Chem. Soc. 1997, 119, 11988–11989.CrossRefGoogle Scholar
  28. 23.(b)
    Price, W. D.; Schnier, P. D.; Williams, E. R. J. Phys. Chem. B 1997, 101, 664–673.CrossRefGoogle Scholar
  29. 24.(a)
    Schnier, P. D.; Price, W. D.; Strittmatter, E. F.; Williams, E. R. J. Am. Soc. Mass Spectrom. 1997, 8, 771–780.CrossRefGoogle Scholar
  30. 24.(b)
    Schnier, P. D.; Price, W. D.; Jockusch, R. A.; Williams, E. R. J. Am. Chem. Soc. 1996, 118, 7178–7189.CrossRefGoogle Scholar
  31. 25.(a)
    Jockusch, R. A.; Schnier, P. D.; Price, W. D.; Strittmatter, E. F.; Demirev, P. A.; Williams, E. R. Anal. Chem. 1997, 69, 1119–1126.CrossRefGoogle Scholar
  32. 25.(b)
    Gross, D. S.; Zhao, Y.; Williams, E. R. J. Am. Soc. Mass Spectrom. 1997, 8, 519–524.CrossRefGoogle Scholar
  33. 26.
    Schnier, P. D.; Klassen, J. S.; Strittmatter, E. F.; Williams, E. R. J. Am. Chem. Soc., in press.Google Scholar
  34. 27.
    Hoaglund, C. S.; Liu, Y.; Ellington, A. D.; Pagel, M.; Clemmer, D. E. J. Am. Chem. Soc. 1997, 119, 9051–9052.CrossRefGoogle Scholar
  35. 28.
    Benson, S. W. Thermochemical Kinetics. Methods for the Estimation of Thermochemical Data and Rate Parameters; Wiley: New York, 1968.Google Scholar
  36. 29.
    Nordhoff, E.; Kirpekar, F.; Roepstorff, P. Mass Spectrom. Rev. 1996, 15, 67–138.CrossRefGoogle Scholar
  37. 30.
    Ho, Y.; Kebarle, P. Int. J. Mass Spectrom. Ion Processes 1997, 165, 433–455.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1998

Authors and Affiliations

  • John S. Klassen
    • 1
  • Paul D. Schnier
    • 1
  • Evan R. Williams
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations