Advertisement

Electron inity of 1,3,5,7-cyclooctatetraene determined by the kinetic method

  • Jeff W. Denault
  • Guodong Chen
  • R. Graham CooksEmail author
Articles

Abstract

The kinetic method is used to determine the electron inity (EA) of 1,3,5,7-cyclooctatetraene (COT), a compound that undergoes a significant structural change upon electron attachment. Collision-induced dissociation of anionic clusters of COT with a set of reference compounds (Ref), [COT·Ref]−·, at various collision energies, allowed deconvolution of the relative enthalpies and entropies of the competitive reactions. The adiabatic EA of COT is determined to be 0.58±0.10 eV, in good agreement with the value, 0.58±0.04 eV, of Wentworth and Ristau (J. Phys. Chem. 1969, 73, 2126) determined by thermal electron detachment as well as the more recent value, 0.55±0.02 eV, of Kato et al. (J. Am. Chem. Soc. 1997, 119, 7863) determined by equilibrium electron transfer with molecular oxygen. A large entropy difference, 25.6±10.0 e.u. (J mol−1 K−1), is observed between the two dissociation channels. This entropy difference corresponds to a negative 14.7±13.0 e.u. change for the dissociation of the dimer to give COT−· and the neutral reference compound and a positive 10.9±8.4 e.u. entropy change for the dissociation of the dimer to give Ref−· and neutral COT.

Keywords

Collision Energy Reference Compound Electron Affinity Effective Temperature Kinetic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wentworth, W. E.; Ristau, W. J. Phys. Chem. 1969, 73, 2126.CrossRefGoogle Scholar
  2. 2.
    Kato, S.; Lee, H. S.; Gareyev, R.; Wenthold, P. G.; Lineberger, W. C.; DePuy, C. H.; Bierbaum, V. M. J. Am. Chem. Soc. 1997, 119, 7863.CrossRefGoogle Scholar
  3. 3.
    Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, 1.CrossRefGoogle Scholar
  4. 4.
    Kebarle, P.; Chowdhury, S. Chem. Rev. 1987, 87, 513.CrossRefGoogle Scholar
  5. 5.
    Mead, R. D.; Stevens, A. E.; Lineberger, W. C. In Gas Phase Ion Chemistry: Ions and Light; Bowers, M. T., Ed.; Academic: Orlando, 1984; Vol. 3, p 214.Google Scholar
  6. 6.
    Drazaic, P. S.; Marks, J.; Brauman, J. I. In Gas Phase Ion Chemistry: Ions and Light; Bowers, M. T. Ed.; Academic: Orlando, 1984; Vol. 3, p 168.Google Scholar
  7. 7.
    Gygax, R.; McPeters, H. L.; Brauman, J. I. J. Am. Chem. Soc. 1979, 101, 2567.CrossRefGoogle Scholar
  8. 8.
    Wenthold, P. G.; Hrovat, D. A.; Borden, W. T.; Lineberger, W. C. Science 1996, 272, 1456.CrossRefGoogle Scholar
  9. 9.
    Burinsky, D. J.; Fukuda, E. K.; Campana, J. E. J. Am. Chem. Soc. 1984, 106, 2770.CrossRefGoogle Scholar
  10. 10.
    Chen, G.; Cooks, R. G. J. Mass Spectrom. 1995, 30, 1167.CrossRefGoogle Scholar
  11. 11.
    Chen, G.; Cooks, R. G.; Corpuz, E.; Scott, L. T. J. Am. Soc. Mass Spectrom. 1996, 7, 619.CrossRefGoogle Scholar
  12. 12.
    Chen, G.; Shuguang, M.; Cooks, R. G. J. Mass Spectrom. 1997, 32, 1305.CrossRefGoogle Scholar
  13. 13.
    Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Mass Spectrom. Rev. 1994, 13, 287.CrossRefGoogle Scholar
  14. 14.
    Decouzon, M.; Maria, P. C.; Gal, J. F.; Herreros, M.; Murrell, J.; Todd, J. F. J. Rapid Commun. Mass Spectrom. 1996, 10, 242.CrossRefGoogle Scholar
  15. 15.
    Chen, G.; Cooks, R. G. J. Mass Spectrom. 1997, 32, 333.CrossRefGoogle Scholar
  16. 16.
    Chen, G.; Wong, P.; Cooks, R. G. Anal. Chem. 1997, 69, 3641.CrossRefGoogle Scholar
  17. 17.
    Denault, J. W.; Chen, G.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1998, 175, 205.CrossRefGoogle Scholar
  18. 18.
    Cerda, B. A.; Wesdemiotis, C. J. Am. Chem. Soc. 1996, 118, 11884.CrossRefGoogle Scholar
  19. 19.
    Eller, K.; Schwarz, H. Organometallics 1989, 8, 1820.CrossRefGoogle Scholar
  20. 20.
    Yang, S. S.; Wong, P.; Ma, S.; Cooks, R. G. J. Am. Soc. Mass Spectrom. 1996, 7, 198.CrossRefGoogle Scholar
  21. 21.
    Yang, S. S.; Chen, G.; Ma, S.; Cooks, R. G.; Gozzo, F. C.; Eberlin, M. N. J. Mass Spectrom. 1995, 30, 807.CrossRefGoogle Scholar
  22. 22.
    Cooks, R. G.; Wong, P. S. H. Acc. Chem. Res. 1998, 31, 379.CrossRefGoogle Scholar
  23. 23.
    Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; Wiley-Interscience: London, 1972.Google Scholar
  24. 24.
    Olmstead, W. N.; Brauman, J. I. J. Am. Chem. Soc. 1977, 99, 4219.CrossRefGoogle Scholar
  25. 25.
    Beauchamp, J. L. California Institute of Technology, at Pasadena, personal communication, 1995.Google Scholar
  26. 26.
    Cheng, X.; Wu, Z.; Fenselau, C. J. Am. Chem. Soc. 1993, 115, 4844.CrossRefGoogle Scholar
  27. 27.
    NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Mallard, W. G.; Linstrom, P. J., Eds.; National Institute of Standards and Technology: Gaithersburg MD, 1998 (http://webbook.nist.gov).Google Scholar

Copyright information

© American Society for Mass Spectrometry 1998

Authors and Affiliations

  • Jeff W. Denault
    • 1
  • Guodong Chen
    • 1
  • R. Graham Cooks
    • 1
    Email author
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations