Mass spectrometric and quantum mechanical analysis of gas-phase formation, structure, and decomposition of various b2 ions and their specifically deuterated analogs

  • Klaus Eckart
  • Max C. Holthausen
  • Wolfram Koch
  • Joachim Spiess


B ions represent an important type of fragment ions derived from protonated peptides by cleavage of an amide bond with N-terminal charge retention. Such species have also been discussed as key intermediates during cyclic peptide fragmentation. Detailed structural information on such ion types can facilitate the interpretation of multiple step fragmentations such as the formation of inner chain fragments from linear peptides or the fragmentation of cyclic peptides. The structure of different b2 ion isomers was investigated with collision-induced dissociations (CID) in combination with hydrogen/deuterium (H/D) exchange of the acidic protons. Special care was taken to investigate fragment ions derived from pure gas-phase processes. Structures deduced from the results of the CID analysis were compared with structures predicted on the basis of quantum chemical density functional theory (DFT) calculations to be most stable. The results pointed to different types of structures for b2 ion isomers of complementary amino acid sequences. Either the protonated oxazolone structure or the N-terminally protonated immonium ion structure were proposed on the basis of the CID results and the DFT calculations. In addition, the analysis of different selectively N-alkylated peptide analogs revealed mechanistic details of the processes generating b ions.


Density Functional Theory Calculation Oxazolone Oxazolone Structure Naphthylamide Quantum Chemical Density Functional Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Tyler, A. N. Nature 1981, 193, 270–275.CrossRefGoogle Scholar
  2. 2.
    Biemann, K. Methods Enzymol 1990, 193, 455–479.CrossRefGoogle Scholar
  3. 3.
    Papayannopoulos, I. A. Mass Spectrom. Rev. 1995, 14, 49–73.CrossRefGoogle Scholar
  4. 4.
    Roepstorff, P.; Fohlman, J. Biomed. Mass Spectrom. 1984, 11, 601.CrossRefGoogle Scholar
  5. 5.
    Biemann, K.; Papayannopoulos, I. A. Acc. Chem. Res. 1994, 27, 370–378.CrossRefGoogle Scholar
  6. 6.
    Cooks, R. G.; Hoke, S. H. II; Morand, K. L.; Lammert, S. A. Int. J. Mass Spectrom. Ion Processes 1992, 118/119, 1–36.CrossRefGoogle Scholar
  7. 7.
    March, R. E. Int. J. Mass Spectrom. Ion Processes 1992, 118/119, 71–135.CrossRefGoogle Scholar
  8. 8.
    Eckart, K. Mass Spectrom. Rev. 1994, 13, 23–55.CrossRefGoogle Scholar
  9. 9.
    Müller, D. R.; Eckersley, M.; Richter, W. J. Org. Mass Spectrom. 1988, 23, 217–222.CrossRefGoogle Scholar
  10. 10.
    Cordero, M. M.; Houser, J. J.; Wesdemiotis, C. Anal. Chem. 1993, 65, 1594–1601.CrossRefGoogle Scholar
  11. 11.
    Carrol, J. A.; Wu, J.; Do, T.; Lebrilla, C. B. Proceedings of the 42nd ASMS Conference on Mass Spectrometry and Allied Topics.; Chicago, 1994; p 475.Google Scholar
  12. 12.
    Eckart, K.; Spiess, J. Proceedings of the 42nd ASMS Conference on Mass Spectrometry and Allied Topics.; Chicago, 1994; p 474.Google Scholar
  13. 13.
    Yalcin, T.; Khouw, C.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. J. Am. Soc. Mass Spectrom. 1995, 6, 1165–1174.CrossRefGoogle Scholar
  14. 14.
    Yalcin, T.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. J. Am. Soc. Mass Spectrom. 1996, 7, 233–242.CrossRefGoogle Scholar
  15. 15.
    Eckart, K.; Holthausen, M. C.; Bräuninger, T.; Koch, W.; Spiess, J. Proceedings of the 43rd ASMS Conference on Mass Spectrometry and Allied Topics; Atlanta, 1995; p 1046.Google Scholar
  16. 16.
    Grützmacher, H.-F. Int. J. Mass Spectrom. Ion Processes 1992, 118/119, 825–855.CrossRefGoogle Scholar
  17. 17.
    Nold, M. J.; Wesdemiotis, C.; Yalcin, T.; Harrison, A. G. Int. J. Mass Spectrom. Ion Processes 1997, 164, 137–153.CrossRefGoogle Scholar
  18. 18.
    Eckart, K.; Schwarz, H.; Chorev, M.; Gilon, C. Eur. J. Biochem. 1986, 157, 209–216.CrossRefGoogle Scholar
  19. 19.
    Vaisar, T.; Urban, J.; Nakanishi, H. Proceedings of the 44th ASMS Conference on Mass Spectrometry and Allied Topics.; Portland, 1996; p 1241.Google Scholar
  20. 20.
    Sethi, S. K.; Smith, D. L.; McCloskey, J. A. Biochem. Biophys. Res. Commun. 1983, 112, 126–131.CrossRefGoogle Scholar
  21. 21.
    Sepetov, N. F.; Issakova, O. L.; Lebl, M.; Swiderek, K.; Stahl, D. C.; Lee, T. D. Rapid Commun. Mass Spectrom. 1993, 7, 58–62.CrossRefGoogle Scholar
  22. 22.
    Spengler, B.; Lützenkirchen, F.; Kaufmann, R. Org. Mass Spectrom. 1993, 28, 1482–1490.CrossRefGoogle Scholar
  23. 23.
    Eckart, K.; Spiess, J. J. Am. Soc. Mass Spectrom. 1995, 6, 912–919.CrossRefGoogle Scholar
  24. 24.
    Eckart, K. Ph. D. Thesis, Technical University, Berlin, 1985.Google Scholar
  25. 25.
    Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209–221.CrossRefGoogle Scholar
  26. 26.
    Seminario, J. M.; Politzer, P. Modern Density Functional Theory. A Tool for Chemistry; Elsevier: Amsterdam, 1995.Google Scholar
  27. 27.
    DGauss.; Version 2. 3 ed.; Cray Research Inc.: Eagan, MN, 1994.Google Scholar
  28. 28.
    Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.CrossRefGoogle Scholar
  29. 29.
    Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.CrossRefGoogle Scholar
  30. 30.
    Wu, J.; Lebrilla, C. B. J. Am. Soc. Mass Spectrom. 1995, 6, 91–101.CrossRefGoogle Scholar
  31. 31.
    Johnson, R. S.; Biemann, K. Biomed. Environ. Mass Spectrom. 1989, 18, 945–957.CrossRefGoogle Scholar
  32. 32.
    Falick, A. M.; Hines, W. M.; Medzihradszky, K. F.; Baldwin, M. A.; Gibson, B. W. J. Am. Soc. Mass Spectrom. 1993, 4, 882–893.CrossRefGoogle Scholar
  33. 33.
    Ambihapathy, K.; Yalcin, T.; Leung, H. W.; Harrison, A. G. J. Mass Spectrom. 1997, 32, 209–215.CrossRefGoogle Scholar
  34. 34.
    Gross, M. L.; McCrery, D.; Crow, F.; Tomer, K. B.; Pope, M. R.; Cuifetti, L. M.; Knoche, H. W.; Daly, J. M.; Dunkle, L. D. Tetrahedron Lett 1982, 23, 5381–5384.Google Scholar
  35. 35.
    Kim, S.-D.; Knoche, H. W.; Dunkle, L. D.; McCrery, D. A.; Tomer, K. B. Tetrahedron Lett 1985, 26, 969–972.CrossRefGoogle Scholar
  36. 36.
    Mukerjee, A. K.; Kumar, P. Heterocycles 1981, 16, 1995–2034.CrossRefGoogle Scholar
  37. 37.
    Mukerjee, A. K. Heterocycles 1987, 26, 1077–1097.CrossRefGoogle Scholar
  38. 38.
    Johnson, R. S.; Martin, S. A.; Biemann, K.; Stults, J. T.; Watson, J. T. Anal. Chem. 1987, 59, 2621–2625.CrossRefGoogle Scholar
  39. 39.
    Johnson, R. S.; Martin, S. A.; Biemann, K. Int. J. Mass Spectrom. Ion Processes 1988, 86, 137–154.CrossRefGoogle Scholar
  40. 40.
    Eckart, K.; Schwarz, H.; Tomer, K. B.; Gross, M. L. J. Am. Chem. Soc. 1985, 107, 6765–6769.CrossRefGoogle Scholar
  41. 41.
    Eckart, K.; Schwarz, H.; Ziegler, R. Biomed. Mass Spectrom. 1985, 12, 623–625.CrossRefGoogle Scholar
  42. 42.
    Gross, M. L. Int. J. Mass Spectrom. Ion Processes 1992, 118/119, 137–165.CrossRefGoogle Scholar
  43. 43.
    Tang, X.-J.; Thibault, P.; Boyd, R. K. Anal. Chem. 1993, 65, 2824–2834.CrossRefGoogle Scholar
  44. 44.
    Bean, M. F.; Carr, S. A.; Thorne, G. C.; Reilly, M. H.; Gaskell, S. J. Anal. Chem. 1991, 63, 1473–1481.CrossRefGoogle Scholar
  45. 45.
    Vaisar, T.; Urban, J. J. Mass Spectrom. 1996, 31, 1185–1187.CrossRefGoogle Scholar
  46. 46.
    Eckart, K.; Schwarz, H. Helv. Chim. Acta 1987, 70, 489–498.CrossRefGoogle Scholar
  47. 47.
    Nakamura, T.; Nagaki, H.; Kinoshita, T. Mass Spectrosc 1986, 34, 307–319.Google Scholar

Copyright information

© American Society for Mass Spectrometry 1998

Authors and Affiliations

  • Klaus Eckart
    • 1
  • Max C. Holthausen
    • 1
    • 2
  • Wolfram Koch
    • 1
    • 2
  • Joachim Spiess
    • 1
  1. 1.Department of Molecular NeuroendocrinologyMax Planck Institute for Experimental MedicineGoettingenGermany
  2. 2.Institut für Organische ChemieTechnische Universität BerlinBerlinGermany

Personalised recommendations