Origin of product ions in the MS/MS spectra of peptides in a quadrupole ion trap

  • Richard W. Vachet
  • Kenneth L. Ray
  • Gary L. Glish
Short Communication

Abstract

Stored waveform inverse Fourier transform and double resonance techniques have been used in conjunction with a quadrupole ion trap to study the dissociation patterns of peptide ions. These experiments provide insight into the origin of individual product ions in an MS/MS spectrum. Results show for a series of leucine enkephalin analogues with five amino acid residues that the b 4 ion is the main product ion through which many other product ions arise. It was also observed that the percentage of the a 4 product ions that are formed directly from the protonated molecule (M+H)+ depends on the nature of the fourth amino acid residue. In addition, it was determined that in the peptides studied here lower series b ions (e.g., b 3 arise from direct dissociation of higher series b ions (e.g., b 4 only about 50% of the time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Whitehouse, C. M. Science 1989, 246, 64.CrossRefGoogle Scholar
  2. 2.
    Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Tyler, A. N. J. Chem. Soc. Chem. Commun. 1981, 325.Google Scholar
  3. 3.
    Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299.CrossRefGoogle Scholar
  4. 4.
    Tandem Mass Spectrometry; McLafferty, F. W., Ed.; Wiley: New York, 1983.Google Scholar
  5. 5.
    Busch, K. L.; Glish, G. L.; McLuckey, S. A. Mass Spectrometry/Mass Spectrometry: Techniques and Applications in Tandem Mass Spectrometry; VCH: New York, 1988.Google Scholar
  6. 6.
    Hunt, D. F.; Yates, J. R. III,; Shabanowitz, J.; Winston, S.; Hauer, C. R. Proc. Natl. Acad. Sci. USA 1986, 83, 6233.CrossRefGoogle Scholar
  7. 7.
    Biemann, K.; Martin, S. A. Mass Spectrom. Rev. 1987, 6, 1.CrossRefGoogle Scholar
  8. 8.
    Carr, S. A.; Hemling, M. E.; Bean, M. F.; Roberts, G. D. Anal. Chem. 1991, 63, 2802.CrossRefGoogle Scholar
  9. 9.
    Papayannopolous, I. A. Mass Spectrom. Rev. 1995, 14, 49.CrossRefGoogle Scholar
  10. 10.
    Burinsky, D. J.; Cooks, R. G.; Chess, E. K.; Gross, M. L. Anal. Chem. 1982, 54, 295.CrossRefGoogle Scholar
  11. 11.
    Tomer, K. B.; Guenat, C. R.; Deterding, L. J. Anal. Chem. 1988, 60, 2232.CrossRefGoogle Scholar
  12. 12.
    Ballard, K. D.; Gaskell, S. J. Int. J. Mass Spectrom. Ion Processes 1991, 111, 173.CrossRefGoogle Scholar
  13. 13.
    Thorne, G. C.; Gaskell, S. J. Rapid Commun. Mass Spectrom. 1989, 3, 217.CrossRefGoogle Scholar
  14. 14.
    Schey, K. L.; Schwartz, J. C.; Cooks, R. G. Rapid Commun. Mass Spectrom. 1989, 3, 305.CrossRefGoogle Scholar
  15. 15.
    Schwartz, J. C.; Schey, K. L.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1990, 101, 1.CrossRefGoogle Scholar
  16. 16.
    Colorado, A.; Shen, J. X.; Vartanian, V. H.; Brodbelt, J. Anal. Chem. 1996, 68, 4033.CrossRefGoogle Scholar
  17. 17.
    Shen, J. X.; Brodbelt, J. J. Mass Spectrom. 1996, 31, 1389.CrossRefGoogle Scholar
  18. 18.
    Marshall, A. G.; Wang, T.-C. L.; Ricca, T. L. J. Am. Chem. Soc. 1985, 107, 7893.CrossRefGoogle Scholar
  19. 19.
    Julian, R. K. Jr.; Cooks, R. G. Anal. Chem. 1993, 65, 1827.CrossRefGoogle Scholar
  20. 20.
    Soni, M. H.; Cooks, R. G. Anal. Chem. 1994, 66, 2488.CrossRefGoogle Scholar
  21. 21.
    Doroshenko, V. M.; Cotter, R. J. Rapid Commun. Mass Spectrom. 1996, 10, 65.CrossRefGoogle Scholar
  22. 22.
    Yalcin, T.; Khouw, C.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. J. Am. Soc. Mass Spectrom. 1995, 6, 1165.CrossRefGoogle Scholar
  23. 23.
    Yalcin, T.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. J. Am. Soc. Mass Spectrom. 1996, 7, 233.CrossRefGoogle Scholar
  24. 24.
    Ambihapathy, K.; Yalcin, T.; Leung, H.-W.; Harrison, A. G. J. Mass Spectrom. 1997, 32, 209.CrossRefGoogle Scholar
  25. 25.
    The resonance ejection frequency applied to resonantly eject the b 4 product ion of leucine enkephalin (YGGFL) was 84,805 Hz. Simulations using ITSIM [26] suggest that all b 4 product ions are resonantly ejected between 1 and 4 cycles of the applied resonant signal. This corresponds to a maximum time before ejection of about 50 µs.Google Scholar
  26. 26.
    Reiser, H.-P.; Julian, R. K., Jr.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1992, 121, 49.CrossRefGoogle Scholar
  27. 27.
    Schnier, P. D.; Price, W. D.; Strittmatter, E. F.; Williams, E. R. J. Am. Soc. Mass Spectrom. 1997, 8, 771.CrossRefGoogle Scholar
  28. 28.
    Unpublished results.Google Scholar
  29. 29.
    Thibault, P.; Alexander, A. J.; Boyd, R. K.; Tomer, K. B. J. Am. Soc. Mass Spectrom. 1993, 4, 845.CrossRefGoogle Scholar
  30. 30.
    Vachet, R. W.; Glish, G. L. J. Am. Soc. Mass Spectrom. 1996, 7, 1194.CrossRefGoogle Scholar
  31. 31.
    Madden, T.; Welham, K. J.; Baldwin, M. A. Org. Mass Spectrom. 1991, 26, 443.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1998

Authors and Affiliations

  • Richard W. Vachet
    • 1
  • Kenneth L. Ray
    • 1
  • Gary L. Glish
    • 1
  1. 1.Department of ChemistryUniversity of North CarolinaChapel HillUSA

Personalised recommendations