A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra

Articles

Abstract

This article describes a new algorithm for charge state determination and deconvolution of electrospray ionization (ESI) mass-to-charge ratio spectra. The algorithm (Zscore) is based on a charge scoring scheme that incorporates all above-threshold members of a family of charge states or isotopic components, and deconvolves both low- and high-resolution mass-to-charge ratio spectra, with or without a peak list (stick plot). A scoring weight factor, log (I/I0), in which I is the signal magnitude at a calculated mass-to-charge ratio, and I0 is the signal threshold near that mass-to-charge ratio, was used in most cases. For high-resolution mass-to-charge ratio spectra in which all isotopic peaks are resolved, the algorithm can deconvolve overlapped isotopic multiplets of the same or different charge state. Compared to other deconvolution techniques, the algorithm is robust, rapid, and fully automated (i. e., no user input during the deconvolution process). It eliminates artifact peaks without introducing peak distortions. Its performance is demonstrated for experimental ESI Fourier transform ion cyclotron resonance mass-to-charge ratio spectra (both low and high resolution). Charge state deconvolution to yield a “zero-charge” mass spectrum should prove particularly useful for interpreting spectra of complex mixtures, identifying contaminants, noncovalent adducts, fragments (N-terminal, C-terminal, internal), and chemical modifications of electrosprayed biomacromolecules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  2. 2.
    Mann, M. Org. Mass Spectrom. 1990, 25, 575–587.CrossRefGoogle Scholar
  3. 3.
    Smith, R. D.; Loo, J. A.; Ogorzalek Loo, R. R.; Busman, M.; Udseth, H. R. Mass Spectrom. Rev. 1991, 10, 359–451.CrossRefGoogle Scholar
  4. 4.
    Kebarle, P.; Tang, L. Anal. Chem. 1993, 65, 972A-986A.CrossRefGoogle Scholar
  5. 5.
    McLafferty, F. W. Acc. Chem. Res. 1994, 27, 379–386.CrossRefGoogle Scholar
  6. 6.
    Covey, T. R.; Bonner, R. F.; Shushan, B. I.; Henion, J. Rapid Commun. Mass Spectrom. 1988, 2, 249–256.CrossRefGoogle Scholar
  7. 7.
    Mann, M.; Meng, C. K.; Fenn, J. B. Anal. Chem. 1989, 61, 1702–1708.CrossRefGoogle Scholar
  8. 8.
    Labowsky, M.; Whitehouse, C.; Fenn, J. B. Rapid Commun. Mass Spectrom. 1993, 7, 71–84.CrossRefGoogle Scholar
  9. 9.
    Reinhold, B. B.; Reinhold, V. N. J. Am. Soc. Mass Spectrom. 1992, 3, 207–215CrossRefGoogle Scholar
  10. 10.
    Hagen, J. J.; Monnig, C. A. Anal. Chem. 1994, 66, 1877–1883.CrossRefGoogle Scholar
  11. 11.
    Ferrige, A. G.; Seddon, M. J.; Jarvis, S. Rapid Commun. Mass Spectrom. 1991, 5, 374–379.CrossRefGoogle Scholar
  12. 12.
    Ferrige, A. G.; Seddon, M. J.; Green, B. N.; Jarvis, S. A.; Skilling, J. Rapid Commun. Mass Spectrom. 1992, 6, 707–711.CrossRefGoogle Scholar
  13. 13.
    Henry, K. D.; McLafferty, F. W. Org. Mass Spectrom. 1990, 25, 490–492.CrossRefGoogle Scholar
  14. 14.
    Wu, Q.; Van Orden, S.; Cheng, X.; Bakhtiar, R.; Smith, R. D. Anal. Chem. 1995, 67, 2498–2509.CrossRefGoogle Scholar
  15. 15.
    Senko, M. W.; Hendrickson, C. L.; Pasa-Tolic, L.; Marto, J. A.; White, F. M.; Guan, S.; Marshall, A. G. Rapid Commun. Mass Spectrom. 1996, 10, 1824–1828.CrossRefGoogle Scholar
  16. 16.
    Senko, M. W.; Beu, S. C.; McLafferty, F. W. J. Am. Soc. Mass Spectrom. 1995, 6, 52–56.CrossRefGoogle Scholar
  17. 17.
    Senko, M. W.; Canterbury, J. D.; Guan, S.; Marshall, A. G. Rapid Commun. Mass Spectrom. 1996, 10, 1839–1844.CrossRefGoogle Scholar
  18. 18.
    Zhang, Z.; Li, W.; Li, M.; M., L. T.; Guan, S.; Marshall, A. G. Techn. Prot. Chem. 1997, VIII, 703–713.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1998

Authors and Affiliations

  1. 1.Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA
  2. 2.Department of ChemistryUSA

Personalised recommendations