Sampling of aryldiazonium, anilino, and aryl radicals by membrane introduction mass spectrometry: Thermolysis of aromatic diazoamino compounds

  • Narasimhan Kasthurikrishnan
  • R. Graham Cooks
  • Malcolm J. Thompson
Articles

Abstract

Membrane introduction mass spectrometry (MIMS) is used to sample free radicals generated by thermolysis at atmospheric pressure. This is done by heating the solid sample in a custom-made probe that is fitted with a silicone membrane to allow selective and rapid introduction of the pyrolysates into the ion source of a triple quadrupole mass spectrometer. Phenyldiazonium radical (C6H5N2·) and some of its ring-substituted analogs, the methoxy anilino radical CH3OC6H4NH·, and aryl radicals are generated by gas phase thermolysis of symmetrical aryl diazoamino compounds (ArNH-N2Ar). The radicals are identified by measurement of their ionization energies (IE) using threshold ionization efficiency data. A linear correlation between the ionization energy of the phenyldiazonium radicals and their Brown σ+ values is observed, and this confirms the formation of these species and validates the applicability of MIMS in sampling these radicals. The ionization energies of the aryldiazonium radicals are estimated as IE (p-CH3O-C6H4N2·), 6.74 ± 0.2 eV; IE (p-CH3-C6H4N2·), 7.72 ± 0.2 eV; IE (C6H5N2·), 7.89 ± 0.2 eV; IE (m-Cl-C6H4N2·), 7.91 ± 0.2 eV; IE (p-F-C6H4·N2·), 8.03 ± 0.2 eV; and IE (m-NO2-C6H4N2·), 8.90 = 0.2 eV. The ionization energies of the aryl radicals are estimated as IE (p-CH3O-C6H4·), 7.33 ± 0.2 eV; IE (p-CH3-C6H4·), 8.31 ± 0.2 eV; IE (C6H5·), 8.44 ± 0.2 eV; IE (m-Cl-C6H4·), 8.50 ± 0.2 eV and IE (p-F-C6H4·), 8.54 ± 0.2 eV. Also, the ionization energy of the p-methoxyanilino radical (p-CH3O-C6H4NH·) is estimated as 7.63 ± 0.2 eV.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.(a)
    Dodd, N. J. F. Electron Spin Resonance 1990, 12, 74;Google Scholar
  2. 1.(b)
    Yoshikawa, T.; Kondo, M. Pharma Med. 1990, 8, 11;Google Scholar
  3. 1.(c)
    Okada, S. Pharma Med. 1990, 8, 11.Google Scholar
  4. 2.(a)
    Walters, W. A. The Chemistry of Free Radicals Wiley:New York, 1967.Google Scholar
  5. 2.(b)
    Walling, C. Free Radicals in Solution Wiley:New York, 1957.Google Scholar
  6. 3.
    Forrester, A. R.; Hay, J. M.; Thomson, R. H. Organic Chemistry of Stable Free Radicals Academic:New York, 1968.Google Scholar
  7. 4.
    Lavoisier, A. L. Traité Éleméntaire De Chimie 1793, I, 209.Google Scholar
  8. 5.
    Gomberg, M. J. Am. Chem. Soc. 1900, 2, 757.CrossRefGoogle Scholar
  9. 6.
    O’Neal, H. E.; Benson, H. W. in Free radicals; Kochi, J. K., Ed.; Wiley:New York, 1973.Google Scholar
  10. 7.
    Eltenton, G. C. J. Chem. Phys. 1947, 15, 455.CrossRefGoogle Scholar
  11. 8.
    Holmes, J. L.; Lossing, F. P. Int. J. Mass Spectrom. Ion Phys. 1984, 58, 113.CrossRefGoogle Scholar
  12. 9.
    Biermann, H. W.; Harris, G. W.; Pitts, J. N. J. Phys. Chem. 1982, 86, 2958.CrossRefGoogle Scholar
  13. 10.
    Rudat, M. A.; McEwen, C. N. J. Am. Chem. Soc. 1981, 103, 4349.CrossRefGoogle Scholar
  14. 11.
    Eltenton, G. C. J. Chem. Phys. 1942, 10, 403.CrossRefGoogle Scholar
  15. 12.
    Ingold, K. U.; Lossing, F. P. Can. J. Chem. 1953, 31, 30.CrossRefGoogle Scholar
  16. 13.
    Brasefield, C. J. Phys. Rev. 1928, 31, 52.CrossRefGoogle Scholar
  17. 14.
    Foner, S. N.; Hudson, R. L. J. Chem. Phys. 1953, 21, 1374.CrossRefGoogle Scholar
  18. 15.
    Foner, S. N.; Hudson, R. L. J. Chem. Phys. 1953, 21, 1608.CrossRefGoogle Scholar
  19. 16.
    Knight, A. R.; Gunning, H. E. Can. J. Chem. 1961, 39, 1231.CrossRefGoogle Scholar
  20. 17.
    Lias, S. G.; Bartmess, J. F.; Liebman, J. L.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, S1, 17, 1.Google Scholar
  21. 18.
    Srinivasan, N.; Johnson, R. C.; Kasthurikrishnan, N.; Wong, P.; Cooks, R. G. Anal. Chim. Acta 1997, 350, 257.CrossRefGoogle Scholar
  22. 19.
    Kotiaho, T.; Lauritsen, F. R.; Choudhury, T. K.; Cooks, R. G. Anal. Chem. 1991, 63, 875A.Google Scholar
  23. 20.
    Cooks, R. G.; Kotiaho, T. ACS Symposium Series; American Chemical Society:Washington, DC, 1992; Chap 12, p 508.Google Scholar
  24. 21.
    Srinivasan, N.; Kasthurikrishnan, N.; Cooks, R. G.; Krishnan, M.; Tsao, G. Anal. Chim. Acta 1995, 316, 269.CrossRefGoogle Scholar
  25. 22.
    Bauer, S. J. ; Cooks, R. G. Am. Lab. 1993, Oct, 36–51.Google Scholar
  26. 23.
    Patrick, J. S.; Wong, P.; Xu, C.; Soni, M.; Kasthurikrishnan, N.; Srinivasan, N.; Cooks, R. G. Process Control Quality 1995, 7, 117.Google Scholar
  27. 24.
    Wong, P.; Cooks, R. G.; Cisper, M. E.; Hemberger, P. H. Environ. Sci. Technol. 1995, 29, 215A.Google Scholar
  28. 25.
    Wong, P.; Srinivasan, N.; Kasthurikrishnan, N.; Cooks, R. G.; Pincock, J. A.; Grossert, S. J. Org. Chem. 1996, 61, 6627.CrossRefGoogle Scholar
  29. 26.
    Lewis, R. S.; Deen, M. W.; Tannenbaum, S. R.; Wishnok, J. S. Biol. Mass Spectrom. 1993, 22, 45.CrossRefGoogle Scholar
  30. 27.
    Hirsch, Chem. Ber. 1973, 25, 1892.Google Scholar
  31. 28.
    le Blanc, R. J.; Vaughan, K. Can. J. Chem. 1972, 50, 2544.CrossRefGoogle Scholar
  32. 29.
    Razuvaev, G. A.; Fedotova, E. N.; Ovchinnikova, A. G. J. Gen. Chem. 1953, 23, 435.Google Scholar
  33. 30.
    Pochinok, Ya. V.; Shevchenko, O. I. Ukrainian. Chem. J. 1954, 20, 289.Google Scholar
  34. 31.
    All values obtained from the website.Google Scholar
  35. 32.
    Davy, J. R. Ph. D Thesis, Flinders University, 1970.Google Scholar
  36. 33.
    Hartman, W. W.; Dickey, J. B. Organic Synthesis Collected Vol. 2 1943, 2, 163.Google Scholar
  37. 34.
    Day, B. F.; Campbell, T. W.; Coppinger, G. M. J. Am. Chem. Soc. 1951, 73, 4687.CrossRefGoogle Scholar
  38. 35.
    Goldschimdt, H.; Bardach, B. Ber. Chem. Ges. 1892, 25, 1347.CrossRefGoogle Scholar
  39. 36.
    Meldola, R.; Streatfield, F. W. Ber. Chem. Ges. 1886, 19, 3239.CrossRefGoogle Scholar
  40. 37.
    Glaser, R.; Horan, C. J. J. Org. Chem. 1995, 60, 7518.CrossRefGoogle Scholar
  41. 38.
    Jaffe, H. H. Chem. Rev. 1953, 53, 191.CrossRefGoogle Scholar
  42. 39.
    Brown, H. C.; Okamoto, Y. J. Am. Chem. Soc. 1958, 80, 4979.CrossRefGoogle Scholar
  43. 40.
    Harrison, A. G.; Kebarle, P.; Lossing, F. P. J. Am. Chem. Soc. 1961, 83, 777.CrossRefGoogle Scholar
  44. 41.
    Nuyken, O.; Messmer, K. Org. Mass Spectrom. 1977, 12, 106.CrossRefGoogle Scholar
  45. 42.
    Sergeev, Yu. L.; Akopyan, M. E.; Vilesov, F. I. Opt. Spectrosc. 1972, 32, 121.Google Scholar

Copyright information

© American Society for Mass Spectrometry 1998

Authors and Affiliations

  • Narasimhan Kasthurikrishnan
    • 1
  • R. Graham Cooks
    • 1
  • Malcolm J. Thompson
    • 2
  1. 1.Department of ChemistryPurdue UniversityWest Lafayette
  2. 2.Department of ChemistryFlinders UniversityAdelaideAustralia

Personalised recommendations