A new flowing afterglow-guided ion beam tandem mass spectrometer. Applications to the thermochemistry of polyiodide ions

  • Khanh Do
  • Timothy P. Klein
  • Cynthia Ann Pommerening
  • Lee S. Sunderlin


A new flowing afterglow-guided ion beam tandem mass spectrometer has been constructed. The tandem mass spectrometer has a linear quadrupole-octopole-quadrupole geometry. The apparatus has been successfully tested for the measurement of reaction rates and endothermic reaction thresholds. The new instrument has been used to determine 0 K bond strengths in two polyiodide ions: D(I2−I)=126±6 kJ/mol and D(I2−I 3 )=49±6 kJ/mol. These values compare well to recent computational results. Electron affinity (EA)(I3)=4.15±0.12 eV can be derived from this work and values in the literature.


Bond Strength Electron Affinity Flow Tube Tandem Mass Spectrometer Couple Cluster Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fehsenfeld, F. C.; Schmeltekopf, A. L.; Goldan, P. D.; Schiff, H. I.; Ferguson, E. E. J. Chem. Phys. 1966, 44, 4087–4094.CrossRefGoogle Scholar
  2. 2.
    Graul, S. T.; Squires, R. R. Mass Spectrom. Rev. 1988, 7, 263–358.CrossRefGoogle Scholar
  3. 3.
    Thompson, J. J. Philos. Mag. 1910, 18, 824.Google Scholar
  4. 4.
    Busch, K. L.; Glish, G. L.; McLuckey, S. A. Mass Spectrometry/Mass Spectrometry; VCH: New York, 1988.Google Scholar
  5. 5.
    Jennings, K. R. Int. J. Mass Spectrom. Ion Phys. 1968, 1, 227–235.CrossRefGoogle Scholar
  6. 6.
    Iden, C. R.; Liardon, R.; Koski, W. S. J. Chem. Phys. 1972, 56, 851.CrossRefGoogle Scholar
  7. 7.
    Yu, T.-Y.; Cheng, T. M. H.; Kempter, V.; Lampe, F. W. J. Phys. Chem. 1972, 76, 3321.CrossRefGoogle Scholar
  8. 8.(a)
    Yost, R. A.; Enke, C. G. J. Am. Chem. Soc. 1978, 100, 2274–2275;CrossRefGoogle Scholar
  9. 8.(b)
    Yost, R. A.; Enke, C. G.; McGilvery, D. C.; Smith, D.; Morrison, J. D. Int. J. Mass Spectrom. Ion Phys. 1979, 30, 127–136.CrossRefGoogle Scholar
  10. 9.
    Vestal, M. L.; Futrell, J. H. Chem. Phys. Lett. 1974, 28, 559–561.CrossRefGoogle Scholar
  11. 10.
    Von Zahn, U.; Tatarczyk, H. Phys. Lett. 1964, 12, 190–191.Google Scholar
  12. 11.
    Gerlich, D. Adv. Chem. Phys. 1992, 82, 1–176.CrossRefGoogle Scholar
  13. 12.(a)
    Gerlich, D. Diplom Thesis, University of Freiburg, 1971;Google Scholar
  14. 12.(b)
    Teloy, E.; Gerlich, D. Chem. Phys. 1974, 4, 417–427.CrossRefGoogle Scholar
  15. 13.
    Squires, R. R.; Lane, K. R.; PaiLee, R. E.; Wright, L. G.; Wood, K. V.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1985, 64, 185–191.CrossRefGoogle Scholar
  16. 14.
    Marinelli, P. J.; Paulino, J. A.; Sunderlin, L. S.; Wenthold, P. G.; Poutsma, J. C.; Squires, R. R. Int. J. Mass Spectrom. Ion Processes 1994, 130, 89–105.CrossRefGoogle Scholar
  17. 15.
    Schultz, R. H.; Armentrout, P. B. Int. J. Mass Spectrom. Ion Processes 1991, 107, 29.CrossRefGoogle Scholar
  18. 16.
    Ervin, K. M.; Loh, S. K.; Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1983, 87, 3593. Ervin, K. M.; Armentrout, P. B. J. Chem. Phys. 1985, 83, 166–189.CrossRefGoogle Scholar
  19. 17.(a)
    Hanley, L.; Ruatta, S. A.; Anderson, S. A. J. Chem. Phys. 1987, 87, 260–268.CrossRefGoogle Scholar
  20. 17.(aa)
    Blades, A. T.; Klassen, J. S.; Kebarle, P. Int. J. Mass Spectrom. Ion Processes 1995, 141, 217;CrossRefGoogle Scholar
  21. 17.(b)
    Grushow, A.; Ervin, K. M. J. Am. Chem. Soc. 1995, 117, 11612–11613.CrossRefGoogle Scholar
  22. 18.
    Tebbe, K.-F. “Polyhalogen Cations and Polyhalide Anions,” in Homoatomic Rings, Chains and Macromolecules of Main Group Elements; Rheingold, A. L., Ed.; Elsevier: Amsterdam, 1977.Google Scholar
  23. 19.
    Robbiani, R.; Franklin, J. L. J. Am. Chem. Soc. 1979, 101, 3709–3715.CrossRefGoogle Scholar
  24. 20.
    and references therein Ashkenazi, G.; Kosloff, R.; Ruhman, S.; Tal-Ezer, H. J. Chem. Phys. 1995, 103, 10005–10014, and references therein.CrossRefGoogle Scholar
  25. 21.
    Teitelbaum, R. C.; Ruby, S. L.; Marks, T. J. J. Am. Chem. Soc. 1980, 102, 3322–3328.CrossRefGoogle Scholar
  26. 22.
    Wang, T. X.; Kelley, M. D.; Cooper, J. N.; Beckwith, R. C.; Margerum, D. W. Inorg. Chem. 1994, 33, 5872–5878.CrossRefGoogle Scholar
  27. 23.
    Harada, I.; Furukawa, Y.; Tasami, M.; Shirakawa, H.; Ikeda, S. J. Chem. Phys. 1980, 76, 4746–4757.CrossRefGoogle Scholar
  28. 24.
    Hogness, T. R.; Harkness, R. W. Phys. Rev. 1928, 32, 784–790.CrossRefGoogle Scholar
  29. 25.
    Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.Google Scholar
  30. 26.
    Kapustinskii, A. F. Quart. Rev. Chem. Soc. 1956, 10, 283.CrossRefGoogle Scholar
  31. 27.
    Topol, L. E. Inorg. Chem. 1971, 10, 736–740.CrossRefGoogle Scholar
  32. 28.
    Finch, A.; Gates, P. N.; Peake, S. J. J. Inorg. Nucl. Chem. 1977, 39, 2135–2138.CrossRefGoogle Scholar
  33. 29.
    Danovich, D.; Hrušák, J.; Shaik, S. Chem. Phys. Lett. 1995, 233, 249–256.CrossRefGoogle Scholar
  34. 30.
    Sharp, S. B.; Gellene, G. I. J. Phys. Chem. 1997, 101, 2192–2197.Google Scholar
  35. 31.
    Lin, Z.; Hall, M. B. Polyhedron 1993, 12, 1499–1504.CrossRefGoogle Scholar
  36. 32.
    Upschulte, B. L.; Shul, R. J.; Passarella, R.; Keesee, R. G.; Castleman, A. W. Int. J. Mass Spectrom. Ion Processes 1987, 75, 27.CrossRefGoogle Scholar
  37. 33.(a)
    Rebick, C.; Levine, R. D. J. Chem. Phys. 1973, 58, 3942;CrossRefGoogle Scholar
  38. 33.(b)
    Chesnavich, W. J.; Bowers, M. T. J. Phys. Chem. 1979, 83, 900;CrossRefGoogle Scholar
  39. 33.(c)
    Armentrout, P. B. in Advances in Gas Phase Ion Chemistry, Vol. 1, Adams, N. G.; Babcock, L. M. Eds.; JAI: Greenwich, 1992.Google Scholar
  40. 34.(a)
    Loh, S. K.; Hales, D. A.; Lian, L.; Armentrout, P. B. J. Chem. Phys. 1989, 90, 5466;CrossRefGoogle Scholar
  41. 34.(b)
    Schultz, R. H.; Crellin, K. C.; Armentrout, P. B. J. Am. Chem. Soc. 113, 1991, 8590.CrossRefGoogle Scholar
  42. 35.
    Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, Suppl. 1. The computerized version used in this work is NIST Standard Reference Database 19, 1993.Google Scholar
  43. 36.
    Lifshitz, C.; Long, F. A. J. Chem. Phys. 1964, 41, 2468–2471.CrossRefGoogle Scholar
  44. 37.
    Palmer, D. A.; Ramette, R. W.; Mesmer, R. E. J. Sol. Chem. 1988, 13, 673–683.CrossRefGoogle Scholar
  45. 38.
    Downs, A. J.; Adams, C. J. in Comprehensive Inorganic Chemistry, Bailar, J. C.; Emeleus, J. C.; Nyholm, R.; Trotman-Dickenson, A. F.; Bailar, J. C.; Emeleus, J. C.; Nyholm, R.; Trotman-Dickenson, A. F. Eds.; Pergamon: Oxford, 1973.Google Scholar
  46. 39.
    Marcus, Y. J. Chem. Soc. Faraday Trans. 1 1987, 83, 339–349.CrossRefGoogle Scholar
  47. 40.
    Woods, T. L.; Garrels, R. M. Thermodynamic Values at Low Temperature for Natural Inorganic Materials Oxford University Press: Oxford, 1987.Google Scholar
  48. 41.
    Latimer, W. M.; Pitzer, K. S.; Slansky, C. M. J. Chem. Phys. 1939, 7, 108.CrossRefGoogle Scholar
  49. 42.
    Kang, S. H.; Kunc, J. A. Phys. Rev. A 1991, 44, 3596–3605.CrossRefGoogle Scholar
  50. 43.
    Ikezoe, Y.; Matsuoka, S.; Takebe, M.; Viggiano, A. Gas Phase Ion Molecule Reaction Rate Constants Through 1986, Maruzen: Oxford, 1987.Google Scholar
  51. 44.
    Sunderlin, L. S.; Squires, R. R. Chem. Phys. Lett. 1993, 212, 307–311.CrossRefGoogle Scholar
  52. 45.
    Keesee, R. G.; Castleman, A. W. J. Phys. Chem. Ref. Data 1986, 15, 1011–1071.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1997

Authors and Affiliations

  • Khanh Do
    • 1
  • Timothy P. Klein
    • 1
  • Cynthia Ann Pommerening
    • 1
  • Lee S. Sunderlin
    • 1
  1. 1.Department of ChemistryNorthern Illinois UniversityDeKalbUSA

Personalised recommendations