On the initial velocity of ions generated by matrix-assisted laser desorption ionization and its effect on the calibration of delayed extraction time-of-flight mass spectra

  • Peter Juhasz
  • Marvin L. Vestal
  • Stephen A. Martin
Articles

Abstract

A novel method was developed to measure the initial velocity of ions generated by matrix-assisted laser desorption ionization (MALDI). It is shown both experimentally and theoretically that with a delayed extraction (DE) technique, the flight time of an ion changes linearly with extraction delay. The initial velocity of the ion, a consequence of the desorption process, can be determined from the slope of this linear curve. Systematic study of the initial velocity was undertaken regarding its dependence on the matrix substance, molecular weight of the analyte, ion polarity, and wavelength of irradiation. It was found that the most important factor was the matrix material. Sinapinic acid and α-cyano-4-hydroxycinnamic acid matrices ejected slower peptide and protein ions than 2,5-dihydroxybenzoic acid or 3-hydroxypicolinic acid: ∼ 300 versus ∼ 550 m/s. Matrix ions themselves exhibited a similar order of initial velocities, but these were 15–40% higher than those of insulin ions. The molecular weight of protein samples (between 5 and 25 ku) was found to have little effect on the initial velocity, but for peptides below 5 ku a gradual transition was noted toward the velocity of the matrix ions. Also decreasing velocity with increasing molecular mass was observed for DNA samples in the 4–14-ku range. In the negative ion mode slightly lower velocities were observed than in the positive ion mode. No difference was found between 337- and 266-nm irradiation. Values of the initial velocities were used to correct systematic errors in the internal calibration observed in mass spectra with delayed extraction. These velocity corrections decrease mass errors substantially in the linear mode, in particular for multicomponent mixtures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, R. S.; Lennon, J. J. Anal. Chem. 1995, 67, 1998–2003.CrossRefGoogle Scholar
  2. 2.
    Colby, S. M.; King, T. B.; Reilly, J. P. Rapid Commun. Mass Spectrom. 1994, 8, 865–868.CrossRefGoogle Scholar
  3. 3.
    Whittal, R. M.; Li, L. Anal. Chem. 1995, 67, 1950–1954.CrossRefGoogle Scholar
  4. 4.
    Vestal, M. L.; Juhasz, P.; Martin, S. A. Rapid Commun. Mass Spectrom. 1995, 9, 1044–1050.CrossRefGoogle Scholar
  5. 5.
    Whittal, R. M.; Li, L. Proceedings of the 43rd ASMS Conference on Mass Spectrometry and Allied Topics; Atlanta, GA, May 21–26, 1995; pp 22.Google Scholar
  6. 6.
    Christian, N. P.; Colby, S. M.; Giver, L.; Houston, C. T.; Arnold, R. J.; Ellington, A. D.; Reilly, J. P. Rapid Commun. Mass Spectrom. 1995, 9, 1061–1166.CrossRefGoogle Scholar
  7. 7.
    Juhasz, P.; Roskey, M. T.; Smirnov, I. P.; Haff, L. A.; Vestal, M. L.; Martin, S. A. Anal. Chem. 1996, 68, 941–946.CrossRefGoogle Scholar
  8. 8.
    Roskey, M. T.; Juhasz, P.; Smirnov, I. P.; Takach, E. J.; Martin, S. A.; Haff, L. A. Proc. Nat. Acad. Sci. USA 1996, 93, 4724–4729.CrossRefGoogle Scholar
  9. 9.
    Wiley, W. C.; McLaren, I. H. Rev. Sci. Instrum. 1955, 26, 1150–1157.CrossRefGoogle Scholar
  10. 10.
    Beavis, R. C.; Chait, B. T. Anal. Chem. 1990, 62, 1836–1840.CrossRefGoogle Scholar
  11. 11.
    Zhou, J.; Ens, W.; Standing, K.; Verentchikov, A. Rapid Commun. Mass Spectrom. 1992, 6, 671–678.CrossRefGoogle Scholar
  12. 12.
    Beavis, R. C.; Chait, B. T. Chem. Phys. Lett. 1991, 181, 479.CrossRefGoogle Scholar
  13. 13.
    Huth-Fehre, T.; Becker, C. H. Rapid Commun. Mass Spectrom. 1991, 5, 378–382.CrossRefGoogle Scholar
  14. 14.
    Pan, Y.; Cotter, R. J. Org. Mass Spectrom. 1992, 27, 3–8.CrossRefGoogle Scholar
  15. 15.
    Verentchikov, A.; Ens, W.; Martens, J.; Standing, K. G. Proceedings of the 40th ASMS Conference on Mass Spectrometry and Allied Topics; Washington, DC, May 31–June 5, 1992, pp 360–361.Google Scholar
  16. 16.
    Spengler, B.; Bökelmann, V. Nucl. Instrum. Methods Phys. Res. B. 1993, 82, 379–385.CrossRefGoogle Scholar
  17. 17.
    Kinsel, G. R.; Gillig, K.; Edmondson, R.; Russell, D. H. Proceedings of the 42nd ASMS Conference on Mass Spectrometry and Allied Topics; Chicago, IL, May 29–June 3, 1994; p 4.Google Scholar
  18. 18.
    Chan, T.-W. D.; Thomas, I.; Colburn, A. W.; Derrick, P. J. Chem. Phys. Lett. 1994, 222, 579–585.CrossRefGoogle Scholar
  19. 19.
    Vertes, A.; Irinyi, G.; Gijbels, R. Anal. Chem. 1993, 65, 2389–2393.CrossRefGoogle Scholar
  20. 20.
    Karas, M.; Bahr, U.; Strupat, K.; Hillenkamp, F.; Tsarbopoulos, A.; Pramanik, B. N. Anal. Chem. 1995, 67, 675–679.CrossRefGoogle Scholar
  21. 21.
    Kirsch, D.; Spengler, B.; Kaufmann, R. Proceedings of the 41st ASMS Conference on Mass Spectrometry and Allied Topics; San Francisco, CA, May 31–June 4, 1993; p 670.Google Scholar
  22. 22.
    Tang, X.; Donaldson, R.; Vertes, A. Proceedings of the 41st ASMS Conference on Mass Spectrometry and Allied Topics; San Francisco, CA, May 31–June 4, 1993; p 666.Google Scholar
  23. 23.
    Wu, K. J.; Shaler, T.; Becker, C. H. Anal. Chem. 1994, 66, 1637–1645.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1997

Authors and Affiliations

  • Peter Juhasz
    • 1
  • Marvin L. Vestal
    • 1
  • Stephen A. Martin
    • 1
  1. 1.PerSeptive Biosystems, Inc.Framingham

Personalised recommendations