Effect of the long-range potential on ion mobility measurements

  • Thomas Wyttenbach
  • Gert von Helden
  • Joseph J. Batka
  • Douglas Carlat
  • Michael T. Bowers
Articles

Abstract

The temperature dependence of ion mobilities in helium was studied by using the ion chromatography method to investigate the effect of long-range terms in the ion-buffer gas interaction. Experimental cross sections thus determined increased significantly as the temperature was lowered from 300 to 80 K for all ions investigated, which were fullerene C60+, cationized PEG polymers, cationized crown ethers, and protonated and sodiated oligoglycines. The temperature dependence of the collision cross sections was successfully modeled by employing simple atom-atom interaction potentials including a repulsive R−12 term and the attractive long-range R−6 and R−4 terms, R being the distance between the colliding particles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.(a)
    Loeb, L. B. Basic Processes of Gaseous Electronics; University of California Press: Berkeley, CA, 1960;Google Scholar
  2. 1.(b)
    Massey, H. S. W. Electronic and Ionic Impact Phenomena, Vol. II; Clarendon: Oxford, 1969;Google Scholar
  3. 1.(c)
    McDaniel, E. W.; Mason, E. A. The Mobility and Diffusion of Ions in Gases Wiley: New York, 1973;Google Scholar
  4. 1.(d)
    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; Wiley: New York, 1988.CrossRefGoogle Scholar
  5. 2.(a)
    Hill, H. H., Jr.; Siems, W. F.; St. Louis, R. H.; McMinn, D. G. Anal. Chem. 1990, 62, 1201;CrossRefGoogle Scholar
  6. 2.(b)
    St. Louis, R. H.; Hill, H. H. Crit. Rev. Anal. Chem. 1990, 21, 321;CrossRefGoogle Scholar
  7. 2.(c)
    Eiceman, G. A. Rev. Anal. Chem. 1991, 22, 471;CrossRefGoogle Scholar
  8. 2.(d)
    Karpas, Z. Forensic Sci. Rev. 1990, 1, 103;Google Scholar
  9. 3.(a)
    Kemper, P. R.; Bowers, M. T. J. Phys. Chem. 1991, 95, 5134;CrossRefGoogle Scholar
  10. 3.(b)
    van Koppen, P. A. M.; Kemper, P. R.; Bowers, M. T. J. Am. Chem. Soc. 1993, 115, 5616.CrossRefGoogle Scholar
  11. 4.
    Bowers, M. T. Acc. Chem. Res. 1994, 27, 324.CrossRefGoogle Scholar
  12. 5.
    von Helden, G.; Hsu, M.-T.; Kemper, P. R.; Bowers, M. T. J. Chem. Phys. 1991, 95, 3835.CrossRefGoogle Scholar
  13. 6.
    Dietz, T. G.; Duncan, M. A.; Powers, D. E.; Smalley, R. E. J. Chem. Phys. 1981, 74, 6511.CrossRefGoogle Scholar
  14. 7.(a)
    von Helden, G.; Hsu, M.-T.; Gotts, N. G.; Bowers, M. T. J. Phys. Chem. 1993, 97, 8182.CrossRefGoogle Scholar
  15. 7.(b)
    Shelimov, K. B.; Hunter, J. M.; Jarrold, M. F. Int. J. Mass Spectrom. Ion Processes 1994, 138, 17.CrossRefGoogle Scholar
  16. 8.(a)
    von Helden, G.; Kemper, P. R.; Gotts, N. G.; Bowers, M. T. Science 1993, 259, 1300.CrossRefGoogle Scholar
  17. 8.(b)
    Gotts, N. G.; von Helden, G.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1995, 150, 217.CrossRefGoogle Scholar
  18. 9.
    Bowers, M. T.; Kemper, P. R.; von Helden, G.; van Koppen, P. A. M. Science 1993, 260, 1446.CrossRefGoogle Scholar
  19. 10.(a)
    von Helden, G.; Wyttenbach, T.; Bowers, M. T. Science 1995, 267, 1483.CrossRefGoogle Scholar
  20. 10.(b)
    von Helden, G.; Wyttenbach, T.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1995, 146, 349.CrossRefGoogle Scholar
  21. 11.
    Lee, S.; Wyttenbach, T.; Bowers, M. T. J. Am. Chem. Soc. 1995, 117, 10159.CrossRefGoogle Scholar
  22. 12.
    Clemmer, D. E.; Hudgins, R. R.; Jarold, M. F. J. Am. Chem. Soc. 1995, 117, 10141.CrossRefGoogle Scholar
  23. 13.
    Wyttenbach, T.; von Helden, G.; Bowers, M. T. J. Am. Chem. Soc. 1996, 118, 8355.CrossRefGoogle Scholar
  24. 14.(a)
    von Helden, G.; Gotts, N. G.; Maitre, P.; Bowers, M. T. Chem. Phys. Lett. 1994, 227, 601.CrossRefGoogle Scholar
  25. 14.(b)
    Lee, S.; Gotts, N. G.; von Helden, G.; Bowers, M. T. Science 1995, 267, 999.CrossRefGoogle Scholar
  26. 15.
    Shelminov, K. B.; Clemmer, D. E.; Jarrold, M. F. J. Chem. Soc. Dalton Trans. 1996, 567.Google Scholar
  27. 16.
    Allinger, N. L.; Zhou, X. F.; Bergsma, J. J. Mol. Struct. 1994, 312, 69.Google Scholar
  28. 17.
    Kemper, P. R.; Bowers, M. T. J. Am. Soc. Mass Spectrom. 1990, 1, 197.CrossRefGoogle Scholar
  29. 18.
    Viehland, L. A.; Mason, E. A.; Morrison, W. F.; Flannery, M. R. At. Data Nucl. Data Tables 1975, 16, 495.CrossRefGoogle Scholar
  30. 19.
    Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. J. Phys. Chem. 1996, 100, 16082.CrossRefGoogle Scholar
  31. 20.
    Pearlman, D. A.; Case, D. A.; Caldwell, J. C.; Seibel, G. L.; Singh, U. C.; Weiner, P.; Kollman, P. A. AMBER 4. 0, University of California, San Francisco, 1991.Google Scholar
  32. 21.
    Joly, F.; Lhuillier, C.; Brami, B. Surf. Sci. 1992, 264, 419.CrossRefGoogle Scholar
  33. 22.
    Grootenhuis, P. D. J.; Kollman, P. A. J. Am. Chem. Soc. 1989, 111, 2152.CrossRefGoogle Scholar
  34. 23.
    Wyttenbach, T.; Bowers, M. T., unpublished.Google Scholar

Copyright information

© American Society for Mass Spectrometry 1997

Authors and Affiliations

  • Thomas Wyttenbach
    • 1
  • Gert von Helden
    • 1
  • Joseph J. Batka
    • 1
  • Douglas Carlat
    • 1
  • Michael T. Bowers
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations