Statistical Rice-Ramsperger-Kassel-Marcus quasiequilibrium theory calculations in mass spectrometry

  • Tomas Baercor
  • Paul M. Mayerfn
Account And Perspective

Abstract

The statistical theory [Rice-Ramsperger-Kassel-Marcus quasiequilibrium theory (RRKM/QET)] for calculating dissociation rate constants is explained and its implementation is outlined with sample computer programs. The energy deposition involved in various types of ionization processes is discussed and related to the appearance of the mass spectrum. The RRKM/QET calculations are used to explain the kinetic shift and its effect on the observed onset for fragmentations in the halobenzene ions. Direct dissociation versus rearrangement reactions are discussed in terms of the dissociation rates and the observation of metastable ions. Finally, it is shown how an average rate constant can be obtained from metastable peak intensities as a function of the ion extraction voltage in a conventional mass spectrometer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hinshelwood, C. N. Proc. Roy. Soc. London Ser. A 1926, 113, 230.CrossRefGoogle Scholar
  2. 2.
    Rice, O. K.; Ramsperger, H. C. J. Am. Chem. Soc. 1927, 49, 1617.CrossRefGoogle Scholar
  3. 3.
    Rice, O. K.; Ramsperger, H. C. J. Am. Chem. Soc. 1928, 50, 617.CrossRefGoogle Scholar
  4. 4.
    Kassel, L. S. J. Phys. Chem. 1928, 32, 225.CrossRefGoogle Scholar
  5. 5.
    Wigner, E. J. Chem. Phys. 1937, 5, 720.CrossRefGoogle Scholar
  6. 6.
    Hirschfelder, J. O.; Wigner, E. J. Chem. Phys. 1939, 7, 616.CrossRefGoogle Scholar
  7. 7.
    Forst, W. Theory of Unimolecular Reactions; Academic: New York, 1973.Google Scholar
  8. 8.
    Rosenstock, H. M.; Wallenstein, M. B.; Wahrhaftig, A. L.; Eyring, H. Proc. Nat. Acad. Sci. U. S. A. 1952, 38, 667.CrossRefGoogle Scholar
  9. 9.
    Marcus, R. A.; Rice, O. K. J. Phys. Colloid Chem. 1951, 55, 894.CrossRefGoogle Scholar
  10. 10.
    Klots, C. E. Z. Naturforsch. 1972, 27a, 553.Google Scholar
  11. 11.
    Chesnavich, W. J.; Bowers, M. T. J. Am. Chem. Soc. 1977, 99, 1705.CrossRefGoogle Scholar
  12. 12.
    Pechukas, P.; Light, J. C.; Rankin, C. J. Chem. Phys. 1966, 44, 794.CrossRefGoogle Scholar
  13. 13.
    Chesnavich, W. J.; Bowers, M. T. In: Gas Phase Ion Chemistry, Vol. 1; Bowers, M. T., Ed.: Academic: New York, 1979.Google Scholar
  14. 14.
    Forst, W. J. Phys. Chem. 1991, 95, 3612.CrossRefGoogle Scholar
  15. 15.
    Wardlaw, D. M.; Marcus, R. A. Chem. Phys. Lett. 1984, 110, 230.CrossRefGoogle Scholar
  16. 16.
    Klippenstein, S. J.; Faulk, J. D.; Dunbar, R. C. J. Chem. Phys. 1993, 98, 243.CrossRefGoogle Scholar
  17. 17.
    Chesnavich, W. J.; Bass, L.; Su, T.; Bowers, M. T. J. Chem. Phys. 1981, 74, 2228.CrossRefGoogle Scholar
  18. 18.
    Chesnavich, W. J. J. Chem. Phys. 286, 84, 2615.Google Scholar
  19. 19.
    Lifshitz, C.; Louage, F.; Aviyente, V.; Song, K. J. Phys. Chem. 1991, 95, 9298.CrossRefGoogle Scholar
  20. 20.
    Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics: Theory and Experiments; Oxford: New York 1996.Google Scholar
  21. 21.
    Holbrook, K. A.; Pilling, M. J.; Robertson, S. H. Unimolecular Reactions; Wiley: Chichester, 1996.Google Scholar
  22. 22.
    Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell Scientific: Oxford, 1990.Google Scholar
  23. 23.
    Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; Wiley-Interscience: London, 1972.Google Scholar
  24. 24.
    Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice-Hall: Englewood Cliffs, NJ, 1989.Google Scholar
  25. 25.
    Beyer, T.; Swinehart, D. R. ACM Commun. 1973, 16, 379.CrossRefGoogle Scholar
  26. 26.
    Whitten, G. Z.; Rabinovitch, B. S. J. Chem. Phys. 1963, 38, 2466.CrossRefGoogle Scholar
  27. 27.
    Whitten, G. Z.; Rabinovitch, B. S. J. Chem. Phys. 1964, 41, 1883.CrossRefGoogle Scholar
  28. 28.
    Kinsinger, J. A.; Taylor, J. W. Int. J. Mass Spectrom. Ion Processes 1973, 11, 461.CrossRefGoogle Scholar
  29. 29.
    Munson, M. S. B.; Field, F. H. J. Am. Chem. Soc. 1966, 88, 2621.CrossRefGoogle Scholar
  30. 30.
    Harrison, A. G. Chemical Ionization Mass Spectrometry; CRC: Boca Raton, Fl, 1992.Google Scholar
  31. 31.
    Lin, C. Y.; Dunbar, R. C. J. Phys. Chem. 1994, 98, 1369.CrossRefGoogle Scholar
  32. 32.
    Beckey, H. D. Principles of Field Ionization and Field Desorption Mass Spectrometry; Pergamon: Boca Raton, FL, 1992.Google Scholar
  33. 33.
    Derrick, P. J.; Burlingame, A. L. Acc. Chem. Res. 1974, 7, 328.CrossRefGoogle Scholar
  34. 34.
    Kluft, E.; Nibbering, N. M. M. Int. J. Mass Spectrom. Ion Processes 1989, 92, 171.CrossRefGoogle Scholar
  35. 35.
    Russell, D. H.; Gross, M. L.; van der Greef, J.; Nibbering, N. M. M. J. Am. Chem. Soc. 1979, 101, 2086.CrossRefGoogle Scholar
  36. 36.
    Wannier, G. H. Phys. Rev. 1953, 90, 817.CrossRefGoogle Scholar
  37. 37.
    Baer, T. Adv. Chem. Phys. 1986, 64, 111.CrossRefGoogle Scholar
  38. 38.
    Booze, J. A.; Schweinsberg, M.; Baer, T. J. Chem. Phys. 1993, 99, 4441.CrossRefGoogle Scholar
  39. 39.
    Nishimura, T.; Das, P. R.; Meisels, G. G. J. Chem. Phys. 1986, 84, 6190.CrossRefGoogle Scholar
  40. 40.
    Gilman, J. P.; Hsieh, T.; Meisels, G. G. J. Chem. Phys. 1983, 78, 3767.CrossRefGoogle Scholar
  41. 41.
    Zha, Q.; Hayes, R. N.; Nishimura, T.; Meisels, G. G.; Gross, M. L. J. Phys. Chem. 1990, 94, 1286.CrossRefGoogle Scholar
  42. 42.
    Kuhlewind, H.; Kiermeier, A.; Neusser, H. J. J. Chem. Phys. 1986, 85, 4427.CrossRefGoogle Scholar
  43. 43.
    Kuhlewind, H.; Kiermeier, A.; Neusser, H. J.; Schlag, E. W. J. Chem. Phys. 1987, 87, 6488.CrossRefGoogle Scholar
  44. 44.
    Neusser, H. J. Int. J. Mass Spectrom. Ion Processes 1987, 79, 141.CrossRefGoogle Scholar
  45. 45.
    So, H. Y.; Dunbar, R. C. J. Am. Chem. Soc. 1988, 110, 3080.CrossRefGoogle Scholar
  46. 46.
    Faulk, J. D.; Dunbar, R. C.; Lifshitz, C. J. Am. Chem. Soc. 1990, 112, 7893.CrossRefGoogle Scholar
  47. 47.
    Dunbar, R. C. J. Phys. Chem. 1987, 91, 2801.CrossRefGoogle Scholar
  48. 48.
    Malinovich, Y.; Lifshitz, C. J. Phys. Chem. 1986, 90, 2200.CrossRefGoogle Scholar
  49. 49.
    Gotkis, Y.; Oleinikova, M.; Naor, M.; Lifshitz, C. J. Phys. Chem. 1993, 97, 12282.CrossRefGoogle Scholar
  50. 50.
    Lifshitz, C. Acc. Chem. Res. 1994, 27, 138.CrossRefGoogle Scholar
  51. 51.
    Choe, J. C.; Kim, M. S. J. Phys. Chem. 1991, 95, 50.CrossRefGoogle Scholar
  52. 52.
    Cho, Y. S.; Kim, M. S.; Choe, J. C. Int. J. Mass Spectrom. Ion Processes 1995, 145, 187.CrossRefGoogle Scholar
  53. 53.
    Butler, J. J.; Fraser-Monteiro, M. L.; Fraser-Monteiro, L.; Baer, T.; Hass, J. R. J. Phys. Chem. 1982, 86, 747.CrossRefGoogle Scholar
  54. 54.
    Chupka, W. A. J. Chem. Phys. 1959, 30, 191.CrossRefGoogle Scholar
  55. 55.
    Lifshitz, C. Mass Spectrom. Rev. 1982, 1, 309.CrossRefGoogle Scholar
  56. 56.
    Baer, T.; Tsai, B. P.; Smith, D.; Murray, P. T. J. Chem. Phys. 1976, 64, 2460.CrossRefGoogle Scholar
  57. 57.
    Lifshitz, C.; Malinovich, Y. Int. J. Mass Spectrom. Ion Processes 1984, 60, 99.CrossRefGoogle Scholar
  58. 58.
    Malinovich, Y.; Arakawa, R.; Haase, G.; Lifshitz, C. J. Phys. Chem. 1985, 89, 2253.CrossRefGoogle Scholar
  59. 59.
    Dunbar, R. C.; Chen, J. H.; So, H. Y.; Asamoto, B. J. Chem. Phys. 1987, 86, 2081.CrossRefGoogle Scholar
  60. 60.
    Asamoto, B.; Dunbar, R. C. J. Phys. Chem. 1987, 91, 2804.CrossRefGoogle Scholar
  61. 61.
    Dunbar, R. C. Mass Spectrom Rev. 1992, 11, 309.CrossRefGoogle Scholar
  62. 62.
    Huang, F. S.; Dunbar, R. C. J. Am. Chem. Soc. 1990, 112, 8167.CrossRefGoogle Scholar
  63. 63.
    Baer, T.; Kury, R. Chem. Phys. Lett. 1982, 92, 659.CrossRefGoogle Scholar
  64. 64.
    Rosenstock, H. M.; Stockbauer, R.; Parr, A. C. J. Chem. Phys. 1980, 73, 773.CrossRefGoogle Scholar
  65. 65.
    Duffy, L. M.; Keister, J. W.; Baer, T. J. Phys. Chem. 1995, 99, 17862.CrossRefGoogle Scholar
  66. 66.
    Werner, A. S.; Baer, T. J. Chem. Phys. 1975, 62, 2900.CrossRefGoogle Scholar
  67. 67.
    Dannacher, J.; Stadelmann, J. P.; Vogt, J. J. Chem. Phys. 1981, 74, 2094.CrossRefGoogle Scholar
  68. 68.
    Dannacher, J. Chem. Phys. 1978, 29, 339.CrossRefGoogle Scholar
  69. 69.
    Baer, T.; Willett, G. D.; Smith, D.; Phillips, J. S. J. Chem. Phys. 1979, 70, 4076.CrossRefGoogle Scholar
  70. 70.
    Lifshitz, C.; Ohmichi, N. J. Phys. Chem. 1989, 93, 6329.CrossRefGoogle Scholar
  71. 71.
    Holmes, J. L.; Hop, C. E. C. A.; Terlouw, J. K. Org. Mass Spectrom. 1986, 21, 776.CrossRefGoogle Scholar
  72. 72.
    Lias, S. G.; Liebman, J. F.; Levin, R. D.; Kafafi, S. A.; Stein, S. E. Positive Ion Energetics, Version 2. NIST Standard Reference Database 19A; NIST: Gaithersburg, MD, 1993.Google Scholar
  73. 73.
    Heinrich, N.; Schmidt, J.; Schwarz, H.; Apeloig, Y. J. Am. Chem. Soc. 1987, 109, 1317.CrossRefGoogle Scholar
  74. 74.
    Mayer, P. M.; Baer, T. J. Phys. Chem. 1996, 100, 14949.CrossRefGoogle Scholar
  75. 75.
    Willett, G. D.; Baer, T. J. Am. Chem. Soc. 1980, 102, 6774.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1997

Authors and Affiliations

  • Tomas Baercor
    • 1
  • Paul M. Mayerfn
    • 1
  1. 1.Chemistry DepartmentUniversity of North CarolinaChapel HillUSA

Personalised recommendations