Sulfur trifluoride cation (SF3+) affinities of pyridines determined by the kinetic method: Stereoelectronic effects in the gas phase

  • Philip S. H. Wong
  • Shuguang Ma
  • Sheng Sheng Yang
  • R. Graham Cooks
  • Fabio C. Gozzo
  • Marcos N. Eberlin


Ion/molecule reactions performed by pentaquadrupole mass spectrometry are used to generate cluster ions in which neutral pyridines are bound to the polyatomic cation SF3+. The dimeric ions Py1SF3+Py2, where Py1 and Py2 represent substituted pyridines, are shown to have loosely bound structures by collision-induced dissociation (MS3) experiments and by semiempirical AMI and ab initio RHF/6-31G(d, p) molecular orbital calculations. In the case of dimers comprised of meta- and/or para-substituted pyridines (unhindered pyridines), there is an excellent linear correlation between the logarithm of the fragment ion abundance ratio ln[Py1(SF3+)]/[Py(SF3+)] and the proton affinities (PA) of the constituent pyridines. Semiempirical calculations are used to estimate the SF3+ affinities of pyridines which are found to be in the range of 25–31 kcal/mol. The SF3+ affinities show an excellent linear correlation with the proton affinities of the pyridines, and the relationship SF3+ affinity (kcal/mol) = 0. 73PA — 135. 8 between the two affinities is derived. The effective temperature of the dimeric ions is determined to be 595 ± 69 K, which is in good agreement with values of around 600 K obtained experimentally in studies on many other systems activated under similar conditions. Ortho-substituted pyridines show lower than expected affinities due to stereoelectronic effects that decrease the cation affinities. Gas-phase Stereoelectronic parameters (Sk) are measured from the deviation from the PA correlation and are ordered as 2-MePy (−1.09) < 2,6-diMePy (−1.11) < 2-EtPy (−1.91) < 2,3-diMePy (−2. 15) < 2,5-diMePy (− 2. 25) < 2,4-diMePy (− 2. 40). Overall, the steric effects are larger than those in the corresponding Cl+-bound dimers but smaller than those in the bulky [OCNCO+] system. Calculations show evidence for agostic bonding that offsets the steric effects in some cases. The eclipsed conformation of 2-methylpyridine/SF3+ adduct is found to be more stable than the staggered form by 0. 8 kcal/mol, due to auxiliary agostic bonding between the hydrogen of the ortho methyl substituent and the sulfur atom. Calculations on atomic charge distribution reveal that the positive charge is mainly on the sulfur atom (+1. 99) and the charge on the bonding hydrogen S-H-C (+ 0. 07) is considerably lower than that on the other two methyl hydrogens ( + 0. 14), which appears to be a good indication of agostic binding. The most stable form of the 2-ethylpyridine/SF3+ adduct is found when the N-C1-Cα-Cβ dihedral angle is approximately 60 °, where the ethyl hydrogen is directed toward the SF3 group via an interesting six-membered ring alignment. The experiments show a remarkably small steric effect in 2,6-dimethylpyridine, probably due to strong agostic bonding enhanced by the buttressing effect that shortens the S-H distance. In addition, the face-to-face interactions of the F atoms and the H atoms further stabilize this form.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.(a)
    Bowers, M. T., Ed. Gas Phase Ion Chemistry, Vols. 1–3; Academic: New York, 1979;Google Scholar
  2. 1.(b)
    Futrell, J. H., Ed. Gaseous Ion Chemistry and Mass Spectrometry; Wiley: New York, 1986;Google Scholar
  3. 1.(c)
    Lias, S. G.; Ausloos, P. Ion-Molecule Reactions, Their Role in Radiation Chemistry; American Chemical Society: Washington, DC, 1975;Google Scholar
  4. 1.(d)
    Franklin, J. L., Ed. Ion-Molecule Reactions; Plenum: New York, 1972;Google Scholar
  5. 1.(e)
    Harrison, A. G. Ed. Chemical Ionization Mass Spectrometry; CRC: Boca Raton, FL, 1983.Google Scholar
  6. 2.(a)
    Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Mass Spectrom. Rev. 1994, 13, 287;CrossRefGoogle Scholar
  7. 2.(b)
    McLuckey, S. A.; Cameron, D.; Cooks, R. G. J. Am. Chem. Soc. 1981, 103, 1313.CrossRefGoogle Scholar
  8. 3.
    Eberlin, M. N.; Kotiaho, T.; Shay, B. J.; Yang, S. S.; Cooks, R. G. J. Am. Chem. Soc. 1994, 116, 2457.CrossRefGoogle Scholar
  9. 4.
    Yang, S. S.; Bortolini, O.; Steinmetz, A.; Cooks, R. G. J. Mass Spectrom. 1995, 30, 184.CrossRefGoogle Scholar
  10. 5.
    Yang, S. S.; Chen, G.; Ma, S.; Cooks, R. G.; Gozzo, F. C.; Eberlin, M. N. J. Mass Spectrom. 1995, 30, 807.CrossRefGoogle Scholar
  11. 6.
    Yang, S. S.; Wong, P.; Ma, S.; Cooks, R. G. J. Am. Soc. Mass Spectrom. 1996, 7, 198.CrossRefGoogle Scholar
  12. 7.
    Herron, J. T. J. Phys. Chem. Ref. Data 1987, 16, 1.Google Scholar
  13. 8.(a)
    Mackay, G. I.; Schiff, H. I.; Bohme, D. K. Int. J. Mass Spectrom. Ion Processes 1992, 117, 38;CrossRefGoogle Scholar
  14. 8.(b)
    Latimer, D. R.; Smith, M. A. J. Chem. Phys. 1994, 101, 3410.CrossRefGoogle Scholar
  15. 9.(a)
    Stone, J. A.; Wytenberg, W. J. Int. J. Mass Spectrom. Ion Processes 1989, 94, 269;CrossRefGoogle Scholar
  16. 9.(b)
    Zangerle, R.; Hansel, A.; Richter, R.; Lindinger, W. Int. J. Mass Spectrom. Ion Processes 1993, 129, 117;CrossRefGoogle Scholar
  17. 9.(c)
    Cheung, Y.-S.; Chen, Y.-J.; Ng, C.-Y.; Chiu, S.-W.; Li, W.-K. J. Am. Chem. Soc. 1995, 117, 9725;CrossRefGoogle Scholar
  18. 9.(d)
    Dillard, J. G.; Troester, J. H. J. Phys. Chem. 1975, 79, 2455;CrossRefGoogle Scholar
  19. 9.(e)
    Fehsenfeld, F. C. J. Chem. Phys. 1971, 54, 438;CrossRefGoogle Scholar
  20. 9.(f)
    Babcock, L. M.; Streit, G. E. J. Chem. Phys. 1981, 75, 3864.CrossRefGoogle Scholar
  21. 10.
    Tamura, A.; Inoue, K.; Onuma, T.; Sato, M. Appl. Phys. Lett. 1987, 51, 1503.CrossRefGoogle Scholar
  22. 11.
    Schwartz, J. C.; Schey, K. L.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1990, 101, 1.CrossRefGoogle Scholar
  23. 12.(a)
    Schwartz, J. C.; Wade, A. P.; Enke, C. G.; Cooks, R. G. Anal. Chem. 1990, 62, 1809;CrossRefGoogle Scholar
  24. 12.(b)
    Cooks, R. G.; Amy, J.; Bier, M.; Schwartz, J. C.; Schey, K. L. Adv. Mass Spectrom. 1989, 11A, 33.Google Scholar
  25. 12.(c)
    Juliano, V. F.; Gozzo, F. C.; Eberlin, M. N.; Kascheres, C.; Lago, C. L. Anal. Chem. 1996, 68, 1328.CrossRefGoogle Scholar
  26. 13.
    Cooks, R. G.; Rockwood, A. L. Rapid Commun. Mass Spectrom. 1991, 5, 93.Google Scholar
  27. 14.
    Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.CrossRefGoogle Scholar
  28. 15.(a)
    Majumdar, T. K.; Clairet, F.; Tabet, J.-C.; Cooks, R. G. J. Am. Chem. Soc. 1992, 114, 2897;CrossRefGoogle Scholar
  29. 15.(b)
    Ho, Y.; Squires, R. R. J. Am. Chem. Soc. 1992, 114, 10961.CrossRefGoogle Scholar
  30. 16.
    Nourse, B. D.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1991, 106, 249.CrossRefGoogle Scholar
  31. 17.(a)
    Corderman, R. R.; Beauchamp, J. L. J. Am. Chem. Soc. 1976, 98, 3998.CrossRefGoogle Scholar
  32. 17.(b)
    Jones, R. W.; Staley, R. H. J. Phys. Chem. 1982, 86, 1387;CrossRefGoogle Scholar
  33. 17.(c)
    Operti, L.; Tews, E. C.; Freiser, B. S. J. Am. Chem. Soc. 1988, 110, 3847.CrossRefGoogle Scholar
  34. 18.
    Jenkins, H. D. B.; Kelly, E. J.; Samuel, C. J. Tetrahedron Lett. 1994, 34, 6543.CrossRefGoogle Scholar
  35. 19.
    Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395.CrossRefGoogle Scholar
  36. 20.(a)
    Green, M. L. H. Pure Appl. Chem. 1984, 56, 47;CrossRefGoogle Scholar
  37. 20.(b)
    Brookhart, M.; Green, M. L. H.; Wong, L-L. In Progress in Inorganic Chemistry; Lippard, S. J., Ed.; Wiley: New York, 1988; Vol. 36, p 1.CrossRefGoogle Scholar
  38. 21.
    Crabtree, R. H.; Holt, E. M.; Lavin, M.; Morehouse, S. M. Inorg. Chem. 1985, 24, 1986.CrossRefGoogle Scholar
  39. 22.
    Carmona, E.; Contreras, L.; Poveda, M. L.; Sànchez, J. J. Am. Chem. Soc. 1991, 113, 4322.CrossRefGoogle Scholar
  40. 23.
    Koga, N.; Obara, S.; Morokuma, K. J. Am. Chem. Soc. 1984, 106, 4625.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1997

Authors and Affiliations

  • Philip S. H. Wong
    • 1
  • Shuguang Ma
    • 1
  • Sheng Sheng Yang
    • 1
  • R. Graham Cooks
    • 1
  • Fabio C. Gozzo
    • 2
  • Marcos N. Eberlin
    • 2
  1. 1.Department of Chemistry, Brown LaboratoryPurdue UniversityWest Lafayette
  2. 2.Institute of ChemistryState University of Campinas—UNICAMPCampinasBrazil

Personalised recommendations