Search of sequence databases with uninterpreted high-energy collision-induced dissociation spectra of peptides

  • John R. Yates
  • Jimmy K. Eng
  • Karl R. Clauser
  • Alma L. Burlingame
Articles

Abstract

We have broadened the utility of the SEQUEST computer algorithms to permit correlation of uninterpreted high-energy collision-induced dissociation spectra of peptides with all sequences in a database. SEQUEST now allows for the additional fragment ion types observed under high-energy conditions. We analyzed spectra from peptides isolated following trypsin digestion of 13 proteins. SEQUEST ranked the correct sequence first for 90% (18/20) of the spectra in searches of the OWL database, without constraint by enzyme cleavage specificity or species of origin. All false-positives were flagged by the scoring system. SEQUEST searches databases for sequences that correspond to the precursor ion mass ±0.5 u. Preliminary ranking of the top 500 candidates is done by calculation of fragment ion masses for each sequence, and comparison to the measured ion masses on the basis of ion series continuity, summed ion intensity, and immonium ion presence. Final ranking is done by construction of model spectra for the 500 candidates and constructing/performing of a cross-correlation analysis with the actual spectrum. Given the need to relate mounting genome sequence information with corresponding suites of proteins that comprise the cellular molecular machinery, tandem mass spectrometry appears destined to play the leading role in accelerating protein identification on the large scale required.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olson, M. Proc. Nat. Acad. Sci. USA 1993, 90, 4338–4344.CrossRefGoogle Scholar
  2. 2.
    Geneser, F. Textbook of Histology; Munksgaard, Copenhagen, 1986.Google Scholar
  3. 3.
    Patterson, S.D. Anal. Biochem. 1994, 221, 1–15.CrossRefGoogle Scholar
  4. 4.
    Hunt, D.F.; Henderson, R.A.; Shabanowitz, J.; Sakaguchi, K.; Michel, H.; Sevilir, N.; Cox, A.L.; Apella, E.; Engelhard, V.N. Science 1992, 255, 1261–1263.CrossRefGoogle Scholar
  5. 5.
    Clauser, K.R.; Hall, S.C.; Smith, D.M.; Webb, J.W.; Andrews, L.A.; Tran, H.U.; Epstein, L.B.; Burlingame, A.L. Nat. Acad. Sci. USA 1995, 92, 5072–5076.CrossRefGoogle Scholar
  6. 6.
    Patterson, S.D.; Aebersold, R. Electrophoresis 1995, 16, 1791–1814.CrossRefGoogle Scholar
  7. 7.
    Wilm, M.; Shevchenko, A.; Houthaeve, T.; Breit, S.; Schweigerer, L.; Fotsis, T.; Mann, M. Nature 1996, 379, 466–469.CrossRefGoogle Scholar
  8. 8.
    Yates, J.R.; Speicher, S.; Griffin, P.R.; Hunkapiller, T. Anal. Biochem. 1993, 214, 397–408.CrossRefGoogle Scholar
  9. 9.
    Henzel, W.J.; Billeci, T.M.; Stults, J.T.; Wong, S.C.; Grimley, C.; Watanabe, C. Proc. Nat. Acad. Sci. USA 1993, 90, 5011–5015.CrossRefGoogle Scholar
  10. 10.
    James, P.; Quadroni, M.; Carfoli, E.; Gonnet, G. Biol. Mass Spectrom. 1993, 22, 338–345.CrossRefGoogle Scholar
  11. 11.
    Mann, M.; Hojrup, P.; Roepstorff, P. Biol. Mass Spectrom. 1993, 22, 338–345.CrossRefGoogle Scholar
  12. 12.
    Pappin, D.J.C.; Hojrup, P.; Bleasby, A.J. Curr. Biol. 1993, 3, 327–332.CrossRefGoogle Scholar
  13. 13.
    Hunt, D.F.; Yates, J. R., III; Shabanowitz, J.; Winston, S.; Hauer, C.R. Proc. Nat. Acad. Sci. USA 1986, 84, 620–623.CrossRefGoogle Scholar
  14. 14.
    Kaiser R.E. Jr.,; Cooks, R.G.; Syka, J.E.P.; Stafford, G.C. Rapid Commun. Mass Spectrom. 1990, 4, 30–33.CrossRefGoogle Scholar
  15. 15.
    Medzihradszky, K.F.; Burlingame, A.L. Methods: A Companion to Methods Enzymol. 1994, 6, 284–303.CrossRefGoogle Scholar
  16. 16.
    Medzihradszky, K.F.; Adams, G.A.; Burlingame, A.L.; Bateman, R.H.; Green, M.R. J. Am. Soc. Mass Spectrom. 1996, 7, 1–10.CrossRefGoogle Scholar
  17. 17.
    Biemann, K. Ann. Rev. Biochem. 1992, 61, 977–1010.CrossRefGoogle Scholar
  18. 18.
    Carr, S.A.; Roberts, G.; Annan, R.S.; Hemling, M.E.; Hoyes, J. Proceedings of the 43rd ASMS Conference on Mass Spectrometry and Allied Topics Atlanta, GA, 1995; p 620.Google Scholar
  19. 19.
    Kaufmann, R.; Kirsch, D.; Spengler, B. Int. J. Mass Spectrom. Ion Processes 1994, 131, 355–385.CrossRefGoogle Scholar
  20. 20.
    Johnson, R.S.; Biemann, K. Biomed. Environ. Mass Spectrom. 1989, 18, 945–957.CrossRefGoogle Scholar
  21. 21.
    Rouse, J.C.; Yu, W.; Martin, S.A. J. Am. Soc. Mass Spectrom. 1995, i6, 822–835.Google Scholar
  22. 22.
    Hines, W.M.; Falick, A.M.; Burlingame, A.L.; Gibson, B.W. J. Am. Soc. Mass Spectrom. 1992, 3, 326–336.CrossRefGoogle Scholar
  23. 23.
    Papayannopoulos, I.A.; Biemann, K. J. Am. Soc. Mass Spectrom. 1991, 2, 174–177.CrossRefGoogle Scholar
  24. 24.
    Scarberry, R.E.; Zhang, Z.; Knapp, D.R. J. Am. Soc. Mass Spectrom. 1995, 6, 947–961.CrossRefGoogle Scholar
  25. 25.
    Eng, J.; McCormack, A.L.; Yates J.R. III, J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.CrossRefGoogle Scholar
  26. 26.
    Yates J.R. III,; Eng, J.; McCormack, A.L.; Schieitz, D. Anal. Chem. 1995, 67, 1426–1436.CrossRefGoogle Scholar
  27. 27.
    Yates J.R. III,; Eng, J.; McCormack, A.L. Anal. Chem. 1995, 67, 3202–3210.CrossRefGoogle Scholar
  28. 28.
    Mann, M.; Wilm, M. Anal. Chem. 1994, 66, 4390–4399.CrossRefGoogle Scholar
  29. 29.
    Biemann, K. Methods Enzymol. 1990, 193, 886–888.CrossRefGoogle Scholar
  30. 30.
    Mann, M. Proceedings of the 43rd ASMS Conference on Mass Spectrometry and Allied Topics; Atlanta, GA, 1995; p. 639.Google Scholar
  31. 31.
    Falick, A.M.; Hines, W.M.; Medzihradszky, K.F.; Baldwin, M.A.; Gibson, B.W. J. Am. Soc. Mass Spectrom. 1993, 4, 882–893.CrossRefGoogle Scholar
  32. 32.
    Hall, S.C.; Smith, D.M.; Masiarz, F.R.; Soo, V.W.; Tran, H.U.; Epstein, L.B.; Burlingame, A.L. Proc. Nat. Acad. Sci. USA 1993, 90, 1927–1931.CrossRefGoogle Scholar
  33. 33.
    Wen, D.X.; Livingston, B.D.; Medzihradszky, K.F.; Keim, S.; Burlingame, A.L.; Paulson, J.C. J. Biol. Chem. 1992, 267, 21011–21019.Google Scholar
  34. 34.
    Brown, J.D.; Hann, B.C.; Medzihradszky, K.F.; Niwa, M.; Burlingame, A.L.; Walter, P. EMBO J. 1994, 13, 4390–4400.Google Scholar
  35. 35.
    Walls, F.C.; Baldwin, M.A.; Falick, A.M.; Gibson, B.W.; Kaur, S.; Maltby, D.A.; Gillece-Castro, B.L.; Medzihradszky, K.F.; Evans, S.; Burlingame, A.L., In Biological Mass Spectrometry Burlingame, A.L.; McCloskey, T.A., Eds.; Elsevier: Amsterdam, 1990; pp 197–216.Google Scholar
  36. 36.
    Walls, F.C.; Hall, S.C.; Medzihradszky, K.F.; Yu, Z.; Burlingame, A.L.; Evans, S.; Hoffman, A.D.; Buchanan, R.; Glover, S. Proceedings of the 41st ASMS Conference on Mass Spectrometry and Allied Topics; San Francisco, CA., 1993; pp 937a–937b.Google Scholar
  37. 37.
    Burlingame, A.L., In Biological Mass Spectrometry Present and Future Matsuo T.; Caprioli, R. M.; Gross, M.L.; Seyama, Y., Eds.; Wiley: Chichester, 1994; 147–164.Google Scholar
  38. 38.
    Gibson, B.W.; Biemann, K. Proc. Nat. Acad. Sci. USA 1984, 81, 1956–1960CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1996

Authors and Affiliations

  • John R. Yates
    • 1
  • Jimmy K. Eng
    • 1
  • Karl R. Clauser
    • 2
  • Alma L. Burlingame
    • 2
  1. 1.Department of Molecular BiotechnologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Pharmaceutical ChemistryUniversity of California SanfranciscoSan FranciscoUSA

Personalised recommendations