Protein identification: The origins of peptide mass fingerprinting

  • William J. Henzel
  • Colin Watanabe
  • John T. Stults
Focus: Proteomics Account And Perspective

Abstract

Peptide mass fingerprinting (PMF) grew from a need for a faster, more efficient method to identify frequently observed proteins in electrophoresis gels. We describe the genesis of the idea in 1989, and show the first demonstration with fast atom bombardment mass spectrometry. Despite its promise, the method was seldom used until 1992, with the coming of significantly more sensitive commercial instrumentation based on MALDI-TOF-MS. We recount the evolution of the method and its dependence on a number of technical breakthroughs, both in mass spectrometry and in other areas. We show how it laid the foundation for high-throughput, high-sensitivity methods of protein analysis, now known as proteomics. We conclude with recommendations for further improvements, and speculation of the role of PMF in the future.

References

  1. 1.
    Matsudaira, P. Sequence from Picomole Quantities of Proteins Electroblotted onto Polyvinylidene Difluoride Membranes. J. Biol. Chem. 1987, 262, 10035–10038.Google Scholar
  2. 2.
    Orcutt, B. C.; George, D. G.; Dayhoff, M. O. Protein and Nucleic Acid Sequence Database Systems. Annu. Rev. Biophys. Bioeng. 1983, 12, 419–441.CrossRefGoogle Scholar
  3. 3.
    Barber, M.; Bordoli, R. S.; Sedgewick, R. D.; Tyler, A. N. Fast Atom Bombardment of Solids (FAB). A New Ion Source for Mass spectrometry. J. Chem Soc. Chem. Commun. 1981, 11, 325–347.CrossRefGoogle Scholar
  4. 4.
    Torgerson, D. F.; Skowronski, R. P.; Macfarlane, R. D. New Approach to the Mass Spectroscopy of Non-Volatile Compounds. Biochem. Biosphys. Res. Commun. 1974, 60, 616–621.CrossRefGoogle Scholar
  5. 5.
    Henzel, W. J.; Stults, J. T.; Watanabe, C. Proceedings of the Third Symposium of the Protein Society; Seattle, WA, 1989Google Scholar
  6. 6.
    Cleveland, D. W.; Fischer, S. G.; Kirschner, M. W.; Laemmli, U. K. Peptide Mapping by Limited Proteolysis in Sodium Dodecyl Sulfate and Analysis by Gel Electrophoresis. J. Biol. Chem. 1977, 252, 1102–1106.Google Scholar
  7. 7.
    Henzel, W. J.; Stults, J. T.; Wong, S. C.; Namenuk, A.; Yashio, J.; Watanabe, C. In Techniques in Protein Chemistry; Marshak, D. R., Ed.; Academic Press: San Diego, 1995; Vol. VII, pp 341–346.Google Scholar
  8. 8.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecule. Science 1989, 246, 64–67.CrossRefGoogle Scholar
  9. 9.
    Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  10. 10.
    Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and Polymer Analyses up to m/z 100,000 by Laser Ionization Time-of-flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.CrossRefGoogle Scholar
  11. 11.
    Billeci, T. M.; Stults, J. T. Tryptic Mapping of Recombinant Proteins by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 1993, 65, 1709–1716.CrossRefGoogle Scholar
  12. 12.
    Henzel, W. J.; Billeci, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C. Identifying Proteins from Two-Dimensional Gels by Molecular Mass Searching of Peptide Fragments in Protein Sequence Databases. Proceedings of the National Academy of Sciences; 1993, 90, 5011–5015.CrossRefGoogle Scholar
  13. 13.
    Aebersold, R.; Leavitt, J.; Saavedra, R. A.; Hood, L. E.; Kent, S. B. Internal Amino Acid Sequence Analysis of Proteins Separated by One- or Two-Dimensional Gel Electrophoresis After in Situ Protease Digestion on Nitrocellulose. Proceedings of the National Academy of Sciences; 1987, 84, 6970–6974.CrossRefGoogle Scholar
  14. 14.
    Wong, S. C.; Grimley, C.; Padua, A.; Bourell, J. H.; Henzel, W. J. In Techniques in Protein Chemistry IV; Angeletti, R. H., Ed.; Academic Press: San Diego, 1993, pp 371–378.Google Scholar
  15. 15.
    Mann, M.; Hojrup, P.; Roepstorff, P. Use of Mass Spectrometric Molecular Weight Information to Identify Proteins in Sequence Databases. Biol. Mass Spectrom. 1993, 22, 338–345.CrossRefGoogle Scholar
  16. 16.
    Pappin, D. J. C.; Hojrup, P.; Bleasby, A. J. Rapid Identification of Proteins by Peptide Mass Fingerprinting. Current Biol. 1993, 3, 327–332.CrossRefGoogle Scholar
  17. 17.
    James, P.; Quadroni, M.; Carafoli, E.; Gonnet, G. Protein identification by Mass Profile Fingerprinting. Biochem. Biophys. Res. Commun. 1993, 195, 58–64.CrossRefGoogle Scholar
  18. 18.
    Yates, J. R., III; Speicher, S.; Griffin, P. R.; Hunkapiller, T. Peptide Mass Maps: A Highly Informative Approach to Protein Identification. Anal. Biochem. 1993, 214, 397–408.CrossRefGoogle Scholar
  19. 19.
    Henzel, W. J.; Grimley, C.; Bourell, J. H.; Billeci, T. M.; Wong, S. C.; Stults, J. T. Analysis of Two-Dimensional Gel Proteins by Mass Spectrometry and Microsequencing. Methods Enzymol. 1994, 6, 239–247.CrossRefGoogle Scholar
  20. 20.
    Mann, M.; Wilm, M. Error-Tolerant Identification of Peptides in Sequence Databases by Peptide Sequence Tags. Anal. Chem. 1994, 66, 4390–4399.CrossRefGoogle Scholar
  21. 21.
    Eng, J. K.; McCormack, A. L.; Yates, J. R. An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.CrossRefGoogle Scholar
  22. 22.
    Wolters, D. A.; Washburn, M. P.; Yates, J. R. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Anal. Chem. 2001, 73, 5683–5690.CrossRefGoogle Scholar
  23. 23.
    Jungblut, P.; Thiede, B.; Zimny-Arndt, U.; Müller, E. C.; Scheler, C.; Wittmann-Liebold, B.; Otto, A. Resolution Power of Two-Dimensional Electrophoresis and Identification of Proteins from Gels. Electrophoresis 1996, 17, 839–847.CrossRefGoogle Scholar
  24. 24.
    Taylor, J.; Anderson, N. L.; Scandora, A. E., Jr.; Willard, K. E.; Anderson, N. G. Design and Implementation of a Prototype Human Protein Index. Clin. Chem. 1982, 28, 861–866.Google Scholar
  25. 25.
    Wilkins, M. R.; Sanchez, J.-C.; Gooley, A. A.; Appel, R. D.; Humphrey-Smith, I.; Hochstrasser, D. F.; Williams, K. L. Progress with Proteome Projects: Why All Proteins Expressed by a Genome Should be Identified and How to Do It. Biotech. Gen. Eng. Rev. 1995, 13, 19–50.Google Scholar
  26. 26.
    Arnott, D.; O’Connell, K. L.; King, K. L.; Stults, J. T. An Integrated Approach to Proteome Analysis: Identification of Proteins Associated with Cardiac Hypertrophy. Anal. Biochem. 1998, 258, 1–18.CrossRefGoogle Scholar
  27. 27.
    Fraser, C. M.; Gocayne, J. D.; White, O.; Adams, M. D.; Clayton, R. A.; Fleischmann, R. D.; Bult, C. J.; Kerlavage, A. R.; Sutton, G. G.; Kelley, J. M.; Fritchman, J. L.; Weidman, J. F.; Small, K. V.; Sandusky, M.; Fuhrmann, J. L.; Nguyen, D. T.; Utterback, T.; Saudek, D. M.; Philips, C. A.; Merrick, J. M.; Tomb, J.; Dougherty, B. A.; Bott, K. F.; Hu, P. C.; Lucier, T. S.; Paterson, S. N.; Smith, H. O.; Venter, J. C. The Minimal Gene Complement of Mycoplasma genitalium. Science 1995, 270, 397–404.CrossRefGoogle Scholar
  28. 28.
    Blattner, F. R.; Plunkett, G.; III, Bloch, C. A.; Perna, N. T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J. D.; Rode, C. K.; Mayhew, G. F.; Gregor, J.; Davis, N. W.; Kirkpatrick, H. A.; Goeden, M. A.; Rose, D. J.; Mau, B.; Shao, Y. The Complete Genome Sequence of Escherichia coli K-12. Science 1997, 277, 1453–1462.CrossRefGoogle Scholar
  29. 29.
    Yates, J. R., III; Eng, J. K.; McCormack, A. L. Mining Genomes: Correlating Tandem Mass Spectra of Modified and Unmodified Peptides to Sequences in Nucleotide Databases. Anal. Chem. 1995, 67, 3202–3210.CrossRefGoogle Scholar
  30. 30.
    Shevchenko, A.; Jensen, O. N.; Podtelejnikov, A. V.; Sagliocco, F.; Wilm, M.; Vorm, O.; Mortensen, P.; Boucherie, H.; Mann, M. Linking Genome and Proteome by Mass Spectrometry: Large-Scale Identification of Yeast Proteins from Two-Dimensional Gels. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14440–14445.CrossRefGoogle Scholar
  31. 31.
    Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. Mass Spectrometric Sequencing of Proteins from Silver Stained Polyacrylamide Gels. Anal. Chem. 1996, 68, 850–858.CrossRefGoogle Scholar
  32. 32.
    Otto, A.; Thiede, B.; Müller, E. C.; Scheler, C.; Wittmann-Liebold, B.; Jungblut, P. Identification of Human Myocardial Proteins Separated by Two-Dimensional Electrophoresis Using an Effective Sample Preparation for Mass Spectrometry. Electrophoresis 1996, 17, 1643–1650.CrossRefGoogle Scholar
  33. 33.
    Erdjument-Bromage, H.; Lui, M.; Lacomis, L.; Grewal, A.; Annan, R.; McNulty, D.; Carr, S.; Tempst, P. Examination of Micro-Tip Reversed-Phase Liquid Chromatographic Extraction of Peptide Pools for Mass Spectrometry Analysis. J. Chromatogr. A 1998, 826, 167–181.CrossRefGoogle Scholar
  34. 34.
    Gobom, J.; Nordhoff, E.; Mirgorodskaya, E.; Ekman, R.; Roepstorff, P. Sample Purification and Preparation Technique Based on Nano-Scale Reversed-Phase Columns for the Sensitive Analysis of Complex Peptide Mixtures by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Mass Spectrom. 1999, 34, 105–116.CrossRefGoogle Scholar
  35. 35.
    Kaufmann, R.; Spengler, B.; Luetzenkirchen, F. Mass Spectrometric Sequencing of Linear Peptides by Product-Ion Analysis in a Reflectron Time-of-Flight Mass Spectrometer Using Matrix-Assisted Laser Desorption Ionization. Rapid Commun. Mass Spectrom. 1993, 7, 902–910.CrossRefGoogle Scholar
  36. 36.
    Shevchenko, A.; Loboda, A.; Ens, W.; Standing, K. G. MALDI Quadrupole Time-of-Flight Mass Spectrometry: A Powerful Tool for Proteomic Research. Anal. Chem. 2000, 72, 2132–2141.CrossRefGoogle Scholar
  37. 37.
    Medzihradszky, K. F.; Campbell, J. M.; Baldwin, M. A.; Falick, A. M.; Juhasz, P.; Vestal, M. L.; Burlingame, A. L. The Characteristics of Peptide Collision-Induced Dissociation Using a High-Performance MALDI-TOF/TOF Tandem Mass Spectrometer. Anal. Chem. 2000, 72, 552–558.CrossRefGoogle Scholar
  38. 38.
    Wilm, M.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68, 1–8.CrossRefGoogle Scholar
  39. 39.
    Wahl, J. H.; Gale, D. C.; Smith, R. D. Sheathless Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry Using 10 m i.d. Capillaries: Analyses of Tryptic Digests of Cytochrome c. J. Chromatogr. A 1994, 659, 217–222.CrossRefGoogle Scholar
  40. 40.
    Davis, M.; Lee, T. Rapid Protein Identification Using a Microscale Electrospray LC/MS System on an Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1998, 9, 194–201.CrossRefGoogle Scholar
  41. 41.
    Martin, S. E.; Shabanowitz, J.; Hunt, D. F.; Marto, J. A. Subfemtomole MS and MS/MS Peptide Sequence Analysis Using Nano-HPLC Micro-ESI Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2000, 72, 4266–4274.CrossRefGoogle Scholar
  42. 42.
    Gatlin, C.; Kleemann, G.; Hays, L.; Link, A.; Yates, J. Protein Identification at the Low Femtomole Level from Silver-Stained Gels Using a New Fritless Electrospray Interface for Liquid Chromatrography-Microspray and Nanospray Mass Spectrometry. Anal. Biochem. 1998, 263, 93–101.CrossRefGoogle Scholar
  43. 43.
    Stafford, G. C.; Kelley, P. E.; Syka, J. E. P.; Reynolds, W. E.; Todd, J. F. J. Recent Improvements in Analytical Applications of Ion Trap Technology. Int. J. Mass Spectrom. Ion Processes 1984, 60, 85–98.CrossRefGoogle Scholar
  44. 44.
    Morris, H. R.; Paxton, T.; Dell, A.; Langhorne, J.; Berg, M.; Bordoli, R. S.; Hoyes, J.; Bateman, R. H. High Sensitivity Collisionally-Activated Decomposition Tandem Mass Spectrometry on a Novel Quadrupole/Orthogonal-Acceleration Time-of-flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 1996, 10, 889–896.CrossRefGoogle Scholar
  45. 45.
    Benson, D. A.; Karsch-Mizrachi, I.; Lipman, D. J.; Ostell, J. A.; Rapp, B. A.; Wheeler, D. L. GenBank. Nucleic Acids Res. 2002, 30, 17–20.CrossRefGoogle Scholar
  46. 46.
    Ideker, T.; Thorsson, V.; Ranish, J. A.; Christmas, R.; Buhler, J.; Eng, J. K.; Bumgarner, R.; Goodlett, D. R.; Aebersold, R.; Hood, L. Integrated Genomic and Proteomic Analyses of a Systematically Perturbed Metabolic Network. Science 2001, 292, 929–934.CrossRefGoogle Scholar
  47. 47.
    Celis, J. E.; Palsdottir, H.; Ostergaard, M.; Gromov, P.; Primdahl, H.; Orntoft, T. F.; Wolf, H.; Celis, A.; Gromova, I. Proteomic Strategies to Reveal Tumor Heterogeneity among Urothelial Papillomas. Mol. Cell Proteomics 2002, 1, 269–279.CrossRefGoogle Scholar
  48. 48.
    Steen, H. K. B.; Fernandez, M.; Pandey, A.; Mann, M. Tyrosine Phosphorylation Mapping of the Epidermal Growth Factor Receptor Signaling Pathway. J. Biol. Chem. 2002, 277, 1031–1039.CrossRefGoogle Scholar
  49. 49.
    Chen, L. S.; Shou, W.; Deshaies, R. J.; Annan, R. S.; Carr, S. A. Mass Spectrometry-Based Methods for Phosphorylation Site Mapping of Hyperphosphorylated Proteins Applied to Net1, a Regulator of Exit from Mitosis in Yeast. Mol. Cell Proteomics 2002, 1, 204–212.CrossRefGoogle Scholar
  50. 50.
    Rout, M. P.; Aitchison, J. D.; Suprapto, A.; Hjertaas, K.; Zhao, Y.; Chait, B. T. The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism. J. Cell Biol. 2000, 148, 635–652.CrossRefGoogle Scholar
  51. 51.
    Allen, N. P.; Patel, S. S.; Huang, L.; Chalkley, R. J.; Burlingame, A.; Lutzmann, M.; Hurt, E. C.; Rexach, M. Deciphering Networks of Protein Interactions at the Nuclear Pore Complex. Mol. Cell Proteomics 2002, 1, 930–946.CrossRefGoogle Scholar
  52. 52.
    Deshaies, R. J.; Seol, J. H.; McDonald, W. H.; Cope, G.; Lyapina, S.; Shevchenko, A.; Verma, R.; Yates, J. R., III. Charting the Protein Complexome in Yeast by Mass Spectrometry. Mol. Cell Proteomics 2002, 1, 3–10.CrossRefGoogle Scholar
  53. 53.
    Ho, Y.; Gruhler, A.; Heilbut, A.; Bader, G. D.; Moore, L.; Adams, S. L.; Millar, A.; Taylor, P.; Bennett, K.; Boutilier, K.; Yang, L. Y.; Wolting, C.; Donaldson, I.; Schandorff, S.; Shewnarane, J.; Vo, M.; Taggart, J.; Goudreault, M.; Muskat, B.; Alfarano, C.; Dewar, D.; Lin, Z.; Michalickova, K.; Willems, A. R.; Sassi, H.; Figeys, D.; Tyers, M. Systematic Identification of Protein Complexes in Saccharomyces cerevisiae by Mass Spectrometry. Nature 2002, 415, 180–183.CrossRefGoogle Scholar
  54. 54.
    Gavin, A. C.; Bosche, M.; Krause, R.; Grandi, P.; Marzioch, M.; Bauer, A.; Schultz, J.; Rick, J. M.; Michon, A. M.; Cruciat, C. M.; Remor, M.; Hofert, C.; Schelder, M.; Brajenovic, M.; Ruffner, H.; Merino, A.; Klein, K.; Hudak, M.; Dickson, D.; Rudi, T.; Gnau, V.; Bauch, A.; Bastuck, S.; Huhse, B.; Leutwein, C.; Heurtier, M. A.; Copley, R. R.; Edelmann, A.; Querfurth, E.; Rybin, V.; Drewes, G.; Raida, M.; Bouwmeester, T.; Bork, P.; Seraphin, B.; Kuster, B. Functional Organization of the Yeast Proteome by Systematic Analysis of Protein Complexes. Nature 2002, 415, 141–147.CrossRefGoogle Scholar
  55. 55.
    Garin, J. D. R.; Kieffer, S.; Dermine, J. F.; Duclos, S.; Gagnon, E.; Sadoul, R.; Rondeau, C.; Desjardins, M. The Phagosome Proteome: Insight into Phagosome Functions. J. Cell Biol. 2001, 152, 165–180.CrossRefGoogle Scholar
  56. 56.
    Andersen, J. S.; Lyon, C. E.; Fox, A. H.; Leung, A. K.; Lam, Y. W.; Steen, H.; Mann, M.; Lamond, A. I. Directed Proteomic Analysis of the Human Nucleolus. Curr. Biol. 2002, 12, 1–11.CrossRefGoogle Scholar
  57. 57.
    Huber, L. A. Is Proteomics Heading in the Wrong Direction?. Nature Rev. Mol. Cell Biol. 2003, 74–80.Google Scholar
  58. 58.
    MacCoss, M. J.; McDonald, W. H.; Saraf, A.; Sadygov, R.; Clark, J. M.; Tasto, J. J.; Gould, K. L.; Wolters, D.; Washburn, M.; Weiss, A.; Clark, J. I.; Yates, J. R. Shotgun Identification of Protein Modifications from Protein Complexes and Lens Tissue. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 7900–7905.CrossRefGoogle Scholar
  59. 59.
    Lubman, D. A.; Kachman, M. T.; Wang, H. X.; Gong, S. Y.; Yan, F.; Hamler, R. L.; O’Neil, K. A.; Zhu, K.; Buchanan, N. S.; Barder, T. J. Two-Dimensional Liquid Separations-Mass Mapping of Proteins from Human Cancer Cell Lysates. J. Chromatogr. B 2002, 782, 183–196.CrossRefGoogle Scholar
  60. 60.
    Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, S. Probability-Based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data. Electrophoresis 1999, 20, 3551–3567.CrossRefGoogle Scholar
  61. 61.
    Zhang, W. Z.; Chait, B. T. Profound: An Expert System for Protein Identification Using Mass Spectrometric Peptide Mapping Information. Anal. Chem. 2000, 72, 2482–2489.CrossRefGoogle Scholar
  62. 62.
    Eriksson, J.; Fenyö, D. A Model of Random Mass-Matching and Its Use for Automated Significance Testing in Mass Spectrometric Proteome Analysis. Proteomics 2002, 2, 1615–9861.CrossRefGoogle Scholar
  63. 63.
    Fenyö, D.; Beavis, R. C. A Method for Assessing the Statistical Significance of Mass Spectrometry-Based Protein Identifications Using General Scoring Schemes. Anal. Chem. 2003, 75, 768–774.CrossRefGoogle Scholar
  64. 64.
    Taylor, C. F.; Paton, N. W.; Garwood, K. L.; Kirb, P. D.; Stead, D. A.; Yin, Z.; Deutsch, E. W.; Selway, L.; Walker, J.; Riba-Garcia, I.; Mohammed, S.; Deery, M. J.; Howard, J. A.; Dunkley, T.; Aebersold, R.; Kell, D. B.; Lilley, K. S.; Roepstorff, P.; Yates, J. R., III; Brass, A.; Brown, A. J. P.; Cash, P.; Gaskell, S. J.; Hubbard, S. J.; Oliver, S. G. A Systematic Approach to Modeling, Capturing, and Disseminating Proteomics Experimental Data. Nat. Biotech. 2003, 21, 247–254.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  • William J. Henzel
    • 1
  • Colin Watanabe
    • 1
  • John T. Stults
    • 2
  1. 1.Protein Chemistry Department and Bioinformatics DepartmentGenentech, Inc.South San FranciscoUSA
  2. 2.Analytical Sciences DepartmentBiospect, Inc.South San FranciscoUSA

Personalised recommendations