Journal of the American Society for Mass Spectrometry

, Volume 14, Issue 9, pp 1022–1031 | Cite as

Studies of ligand-induced site-specific phosphorylation of epidermal growth factor receptor

  • Lin Guo
  • Carl J. Kozlosky
  • Lowell H. Ericsson
  • Thomas O. Daniel
  • Douglas P. Cerretti
  • Richard S. Johnson
Focus: Proteomics


The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase involved in the regulation of growth in many animal cells, including cancer cells. Phosphorylation of specific tyrosine residues within the cytoplasmic domain of EGFR is part of the initial activation process that occurs upon ligand binding, and these phosphotyrosine residues subsequently serve as docking sites for intracellular signaling molecules. To study the phosphorylation on each individual site, EGFR generated from a human epidermoid carcinoma cell line (A431) was analyzed by mass spectrometry. Liquid chromatography combined with tandem mass spectrometry (LC/MS/MS) was used to identify the tryptic phosphopeptides and their sites of phosphorylation (Y992, Y1045, Y1068, Y1086, S1142, Y1148, and Y1173). Ion intensities for the phosphorylated and unphosphorylated tryptic peptides containing the sites of phosphorylation were measured, and the intensity ratios were used to assess the degree of phosphorylation at each site. Ligand concentrations were varied for epidermal growth factor (EGF) and transforming growth factor alpha (TGFα) as stimuli, and all of the EGFR tyrosine sites were consequently found to exhibit increased levels of phosphorylation, although at different rates and to different extents. Phosphorylation of Y992 appeared to plateau at lower concentrations of ligand, whereas the other sites continued to have increased phosphorylation throughout a wide range of concentrations. Only small differences could be detected between the EGF and the TGFα-induced EGFR phosphorylation. Pretreatment of A431 cells with a small molecule EGFR inhibitor nearly eliminated the ligand-induced phosphorylation on all of the sites except for Y992 and Y1068.


A431 Cell Phosphorylation Site Tryptic Peptide Epidermal Growth Factor Receptor Kinase Epidermal Growth Factor Receptor Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Carpenter, G. Receptors for Epidermal Growth Factor and Other Polypeptide Mitogens. Annu. Rev. Biochem. 1987, 56, 881–914.CrossRefGoogle Scholar
  2. 2.
    Olayioye, M. A.; Neve, R. M.; Lane, H. A.; Hynes, N. E. The ErbB Signaling Network: Receptor Heterodimerization in Development and Cancer. Embo. J. 2000, 19, 3159–3167.CrossRefGoogle Scholar
  3. 3.
    Boni-Schnetzler, M.; Pilch, P. F. Mechanism of Epidermal Growth Factor Receptor Autophosphorylation and High-Affinity Binding. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 7832–7836.CrossRefGoogle Scholar
  4. 4.
    Downward, J.; Parker, P.; Waterfield, M. D. Autophosphorylation Sites on the Epidermal Growth Factor Receptor. Nature 1984, 311, 483–485.CrossRefGoogle Scholar
  5. 5.
    Hsuan, J. J.; Totty, N.; Waterfield, M. D. Identification of a Novel Autophosphorylation Site (P4) on the Epidermal Growth Factor Receptor. Biochem. J. 1989, 262, 659–663.Google Scholar
  6. 6.
    Margolis, B. L.; Lax, I.; Kris, R.; Dombalagian, M.; Honegger, A. M.; Howk, R.; Givol, D.; Ullrich, A.; Schlessinger, J. All Autophosphorylation Sites of Epidermal Growth Factor (EGF) Receptor and HER2/neu are Located in Their Carboxyl-Terminal Tails. Identification of a Novel Site in EGF Receptor. J. Biol. Chem. 1989, 264, 10667–10671.Google Scholar
  7. 7.
    Walton, G. M.; Chen, W. S.; Rosenfeld, M. G.; Gill, G. N. Analysis of Deletions of the Carboxyl Terminus of the Epidermal Growth Factor Receptor Reveals Self-Phosphorylation at Tyrosine 992 and Enhanced in Vivo Tyrosine Phosphorylation of Cell Substrates. J. Biol. Chem. 1990, 265, 1750–1754.Google Scholar
  8. 8.
    Levkowitz, G.; Waterman, H.; Ettenberg, S. A.; Katz, M.; Tsygankov, A. Y.; Alroy, I.; Lavi, S.; Iwai, K.; Reiss, Y.; Ciechanover, A.; Lipkowitz, S.; Yarden, Y. Ubiquitin Ligase Activity and Tyrosine Phosphorylation Underlie Suppression of Growth Factor Signaling by c-Cbl/Sli-1. Mol. Cell 1999, 4, 1029–1040.CrossRefGoogle Scholar
  9. 9.
    Shoelson, S. E. SH2 and PTB Domain Interactions in Tyrosine Kinase Signal Transduction. Curr. Opin. Chem. Biol. 1997, 1, 227–234.CrossRefGoogle Scholar
  10. 10.
    Herbst, R. S.; Shin, D. M. Monoclonal Antibodies to Target Epidermal Growth Factor Receptor-Positive Tumors: A New Paradigm for Cancer Therapy. Cancer 2002, 94, 1593–1611.CrossRefGoogle Scholar
  11. 11.
    Couzin, J. Cancer Drugs. Smart Weapons Prove Tough to Design. Science 2002, 298, 522–525.CrossRefGoogle Scholar
  12. 12.
    Campbell, D.; Morrice, N. Identification of Protein Phosphorylation Sites by a Combination of Mass Spectrometry and Solid Phase Edman Sequencing. J. Biomol. Tech. 2002, 13, 119–130.Google Scholar
  13. 13.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  14. 14.
    Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  15. 15.
    Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J.; Hunt, D. F.; White, F. M. Phosphoproteome Analysis by Mass Spectrometry and Its Application to Saccharomyces cerevisiae. Nat. Biotechnol. 2002, 20, 301–305.CrossRefGoogle Scholar
  16. 16.
    Oda, Y.; Nagasu, T.; Chait, B. T. Enrichment Analysis of Phosphorylated Proteins as a Tool for Probing the Phosphoproteome. Nat. Biotechnol. 2001, 19, 379–382.CrossRefGoogle Scholar
  17. 17.
    Zhou, H.; Watts, J. D.; Aebersold, R. A Systematic Approach to the Analysis of Protein Phosphorylation. Nat. Biotechnol. 2001, 19, 375–378.CrossRefGoogle Scholar
  18. 18.
    Zhang, X.; Herring, C. J.; Romano, P. R.; Szczepanowska, J.; Brzeska, H.; Hinnebusch, A. G.; Qin, J. Identification of Phosphorylation Sites in Proteins Separated by Polyacrylamide Gel Electrophoresis. Anal. Chem. 1998, 70, 2050–2059.CrossRefGoogle Scholar
  19. 19.
    Ma, Y.; Lu, Y.; Zeng, H.; Ron, D.; Mo, W.; Neubert, T. A. Characterization of Phosphopeptides from Protein Digests Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and Nanoelectrospray Quadrupole Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 1693–1700.CrossRefGoogle Scholar
  20. 20.
    Zappacosta, F.; Huddleston, M. J.; Karcher, R. L.; Gelfand, V. I.; Carr, S. A.; Annan, R. S. Improved Sensitivity for Phosphopeptide Mapping Using Capillary Column HPLC and Microionspray Mass Spectrometry: Comparative Phosphorylation Site Mapping from Gel-Derived Proteins. Anal. Chem. 2002, 74, 3221–3231.CrossRefGoogle Scholar
  21. 21.
    Steen, H.; Kuster, B.; Fernandez, M.; Pandey, A.; Mann, M. Detection of Tyrosine Phosphorylated Peptides by Precursor Ion Scanning Quadrupole TOF Mass Spectrometry in Positive Ion Mode. Anal. Chem. 2001, 73, 1440–1448.CrossRefGoogle Scholar
  22. 22.
    MacCoss, M. J.; McDonald, W. H.; Saraf, A.; Sadygov, R.; Clark, J. M.; Tasto, J. J.; Gould, K. L.; Wolters, D.; Washburn, M.; Weiss, A.; Clark, J. I.; Yates, J. R., III. Shotgun Identification of Protein Modifications from Protein Complexes and Lens Tissue. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 7900–7905.CrossRefGoogle Scholar
  23. 23.
    Stemmann, O.; Zou, H.; Gerber, S. A.; Gygi, S. P.; Kirschner, M. W. Dual Inhibition of Sister Chromatid Separation at Metaphase. Cell 2001, 107, 715–726.CrossRefGoogle Scholar
  24. 24.
    Oda, Y.; Huang, K.; Cross, F. R.; Cowburn, D.; Chait, B. T. Accurate Quantitation of Protein Expression and Site-Specific Phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6591–6596.CrossRefGoogle Scholar
  25. 25.
    Tsay, Y. G.; Wang, Y. H.; Chiu, C. M.; Shen, B. J.; Lee, S. C. A Strategy for Identification and Quantitation of Phosphopeptides by Liquid Chromatography/Tandem Mass Spectrometry. Anal. Biochem. 2000, 287, 55–64.CrossRefGoogle Scholar
  26. 26.
    Asara, J. Lane, W. Ratio Analyzed Quantitation (RAQ) of Phosphorylation Sites from Different Protein States by LC/MS/MS. Proceedings of the 50th Conference on Mass Spectrometry and Allied Topics; Orlando, FL, 2002.Google Scholar
  27. 27.
    Ruse, C. I.; Willard, B.; Jin, J. P.; Haas, T.; Kinter, M.; Bond, M. Quantitative Dynamics of Site-Specific Protein Phosphorylation Determined Using Liquid Chromatography Electrospray Ionization Mass Spectrometry. Anal. Chem. 2002, 74, 1658–1664.CrossRefGoogle Scholar
  28. 28.
    Lee, K. A.; Craven, K. B.; Niemi, G. A.; Hurley, J. B. Mass Spectrometric Analysis of the Kinetics of in Vivo Rhodopsin Phosphorylation. Protein Sci 2002, 11, 862–874.CrossRefGoogle Scholar
  29. 29.
    Wrann, M. M.; Fox, C. F. Identification of Epidermal Growth Factor Receptors in a Hyperproducing Human Epidermoid Carcinoma Cell Line. J. Biol. Chem. 1979, 254, 8083–8086.Google Scholar
  30. 30.
    Giard, D. J.; Aaronson, S. A.; Todaro, G. J.; Arnstein, P.; Kersey, J. H.; Dosik, H.; Parks, W. P. In Vitro Cultivation of Human Tumors: Establishment of Cell Lines Derived from a Series of Solid Tumors. J. Natl. Cancer Inst. 1973, 51, 1417–1423.Google Scholar
  31. 31.
    Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. Probability-Based Protein Identification by Searching Sequence Databases. Electrophoresis 1999, 20, 3551–3567.CrossRefGoogle Scholar
  32. 32.
    Spahr, C.; Susin, S.; Bures, E.; Robinson, J.; Davis, M.; McGinley, M.; Kroemer, G.; Patterson, S. Simplification of Complex Peptide Mixtures for Proteomic Analysis: Reversible Biotinylation of Cysteinyl Peptides. Electrophoresis 2000, 21, 1635–1650.CrossRefGoogle Scholar
  33. 33.
    Wu, D. G.; Wang, L. H.; Sato, G. H.; West, K. A.; Harris, W. R.; Crabb, J. W.; Sato, J. D. Human Epidermal Growth Factor (EGF) Receptor Sequence Recognized by EGF Competitive Monoclonal Antibodies. Evidence for the Localization of the EGF-Binding Site. J. Biol. Chem. 1989, 264, 17469–17475.Google Scholar
  34. 34.
    Chapman, J. R. Practical Organic Mass Spectrometry; John Wiley and Sons, Ltd.: West Sussex, 1993; pp. 272–305.Google Scholar
  35. 35.
    Sweeney, C.; Carraway, K. L., III. Ligand Discrimination by ErbB Receptors: Differential Signaling Through Differential Phosphorylation Site Usage. Oncogene 2000, 19, 5568–5573.CrossRefGoogle Scholar
  36. 36.
    Gazit, A.; Chen, J.; App, H.; McMahon, G.; Hirth, P.; Chen, I.; Levitzki, A. Tyrphostins IV—Highly Potent Inhibitors of EGF Receptor Kinase. Structure-Activity Relationship Study of 4-Anilidoquinazolines. Bioorg. Med. Chem. 1996, 4, 1203–1207.CrossRefGoogle Scholar
  37. 37.
    Biemann, K. Appendix V. Nomenclature for Peptide Fragment Ions (Positive Ions). Methods Enzymol 1990, 193, 886–887.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  • Lin Guo
    • 1
  • Carl J. Kozlosky
    • 1
  • Lowell H. Ericsson
    • 1
  • Thomas O. Daniel
    • 1
  • Douglas P. Cerretti
    • 1
  • Richard S. Johnson
    • 1
  1. 1.Amgen CorporationSeattleUSA

Personalised recommendations