Advertisement

Quantitative proteomic analysis of chromatin-associated factors

  • Yuzuru Shiio
  • Robert N. EisenmanEmail author
  • Eugene C. Yi
  • Sam Donohoe
  • David R. Goodlett
  • Ruedi Aebersold
Focus: Proteomics

Abstract

A method to identify and quantify chromatin-associated proteins has been developed and applied to the analysis of changes in chromatin-associated proteins induced by Myc oncoprotein expression in human B lymphocytes. Chromatin-enriched fractions were isolated by differential detergent/salt extraction and analyzed by ICAT reagent labeling, multi-dimensional chromatography and tandem mass spectrometry. Many known chromatin-associated regulatory factors were identified and quantified. The method will be widely applicable to various biological systems and reveal changes in chromatin-associated regulatory factors that underlie biological phenomena.

Keywords

Origin Recognition Complex Chromatin Protein Quantitative Proteomic Analysis Fred Hutchinson Cancer Research ICAT Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gygi, S. P.; Rochon, Y.; Franza, B. R.; Aebersold, R. Correlation Between Protein and mRNA Abundance in Yeast. Mol. Cell. Biol. 1999, 19, 1720–1730.Google Scholar
  2. 2.
    Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags. Nat. Biotechnol. 1999, 17, 994–999.CrossRefGoogle Scholar
  3. 3.
    Han, D. K.; Eng, J.; Zhou, H.; Aebersold, R. Quantitative Profiling of Differentiation-Induced Microsomal Proteins Using Isotope-Coded Affinity Tags and Mass Spectrometry. Nat. Biotechnol. 2001, 19, 946–951.CrossRefGoogle Scholar
  4. 4.
    Shiio, Y.; Donohoe, S.; Yi, E. C.; Goodlett, D. R.; Aebersold, R.; Eisenman, R. N. Quantitative Proteomic Analysis of Myc Oncoprotein Function. EMBO J. 2002, 19, 5088–5096.CrossRefGoogle Scholar
  5. 5.
    Nesbit, C. E.; Tersak, J. M.; Prochownik, E. V. MYC Oncogenes and Human Neoplastic Disease. Oncogene 1999, 18, 3004–3016.CrossRefGoogle Scholar
  6. 6.
    Amati, B.; Frank, S. R.; Donjerkovic, D.; Taubert, S. Function of the c-Myc Oncoprotein in Chromatin Remodeling and Transcription. Biochim. Biophys. Acta 2001, 1471, M135–145.Google Scholar
  7. 7.
    Eisenman, R. N. Deconstructing Myc. Genes Dev. 2001, 15, 2023–2030.CrossRefGoogle Scholar
  8. 8.
    Luscher, B. Function and Regulation of the Transcription Factors of the Myc/Max/Mad Network. Gene 2001, 277, 1–14.CrossRefGoogle Scholar
  9. 9.
    Oster, S. K.; Ho, C. S.; Soucie, E. L.; Penn, L. Z. The Myc Oncogene: Marvelously Complex. Adv. Cancer Res. 2002, 84, 81–154.CrossRefGoogle Scholar
  10. 10.
    Schuhmacher, M.; Staege, M. S.; Pajic, A.; Polack, A.; Weidle, U. H.; Bonkamm, G. W.; Eick, D.; Kohlhuber, F. Control of Cell Growth by c-Myc in the Absence of Cell Division. Current Biol. 1999, 9, 1255–1258.CrossRefGoogle Scholar
  11. 11.
    Mendez, J.; Stillman, B. Chromatin Association of Human Origin Recognition Complex, cdc6, and Minichromosome Maintenance Proteins During the Cell Cycle: Assembly of Prereplication Complexes in Late Mitosis. Mol. Cell. Biol. 2000, 20, 8602–8612.CrossRefGoogle Scholar
  12. 12.
    Wysocka, J.; Reilly, P. T.; Herr, W. Loss of HCF-1-Chromatin Association Precedes Temperature-Induced Growth Arrest of tsBN67 Cells. Mol. Cell. Biol. 2001, 21, 3820–3829.CrossRefGoogle Scholar
  13. 13.
    Yi, E. C.; Marelli, M.; Lee, H.; Purvine, S. O.; Aebersold, R.; Aitchison, J. D.; Goodlett, D. R. Approaching Complete Peroxisome Characterization by Gas-Phase Fractionation. Electrophoresis 2002, 23, 3205–3216.CrossRefGoogle Scholar
  14. 14.
    Eng, J.; McCormack, A. L.; Yates, J. R. An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.CrossRefGoogle Scholar
  15. 15.
    Olave, I. A.; Reck-Peterson, S. L.; Crabtree, G. R. Nuclear Actin and Actin-Related Proteins in Chromatin Remodeling. Annu. Rev. Biochem. 2002, 71, 755–781.CrossRefGoogle Scholar
  16. 16.
    Hai, T.; Wolfgang, C. D.; Marsee, D. K.; Allen, A. E.; Sivaprasad, U. ATF3 and Stress Responses. Gene Expression 1999, 7, 321–335.Google Scholar
  17. 17.
    Takagi, M.; Sueishi, M.; Saiwaki, T.; Kametaka, A.; Yoneda, Y. A Novel Nucleolar Protein, NIFK, Interacts with the Forkhead Associated Domain of Ki-67 Antigen in Mitosis. J. Biol. Chem. 2001, 276, 25386–25391.CrossRefGoogle Scholar
  18. 18.
    Baliga, N. S.; Pan, M.; Goo, Y. A.; Yi, E.; Goodlett, D. R.; Dimitrov, K.; Shannon, P.; Aebersold, R.; Ng, W. V.; Hood, L. Coordinate Regulation of Energy Transduction Modules in Halobacterium sp. Analyzed by a Global Systems Approach. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 14913–14918.CrossRefGoogle Scholar
  19. 19.
    Guina, T.; Purvine, S. O.; Yi, E. C.; Eng, J.; Goodlett, D. R.; Aebersold, R.; Miller, S. I. Quantitative Proteomic Analysis Indicates Synthesis of a Quinolone by Pseudomonas aeruginosa Isolates from Cystic Fibrosis Airways. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 2771–2776.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  • Yuzuru Shiio
    • 1
    • 2
  • Robert N. Eisenman
    • 1
    Email author
  • Eugene C. Yi
    • 3
  • Sam Donohoe
    • 3
  • David R. Goodlett
    • 3
  • Ruedi Aebersold
    • 3
  1. 1.Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Institute for Systems BiologySeattle
  3. 3.Institute for Systems BiologySeattleUSA

Personalised recommendations