Detection and characterization of methionine oxidation in peptides by collision-induced dissociation and electron capture dissociation

Articles

Abstract

Electron capture dissociation (ECD) and collision-induced dissociation (CID), the two complementary fragmentation techniques, are demonstrated to be effective in the detection and localization of the methionine sulfoxide [Met(O)] residues in peptides using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. The presence of Met(O) can be easily recognized in the low-energy CID spectrum showing the characteristic loss of methanesulfenic acid (CH3SOH, 64 Da) from the side chain of Met(O). The position of Met(O) can then be localized by ECD which is capable of providing extensive peptide backbone fragmentation without detaching the labile Met(O) side chain. We studied CID and ECD of several Met(O)-containing peptides that included the 44-residue human growth hormone-releasing factor (GRF) and the human atrial natriuretic peptide (ANP). The distinction and complementarity of the two fragmentation techniques were particularly remarkable in their effects on ANP, a disulfide bond-containing peptide. While the predominant fragmentation pathway in CID of ANP was the loss of CH3SOH (64 Da) from the molecular ion, ECD of ANP resulted in many sequence-informative products, including those from cleavages within the disulfide-bonded cyclic structure, to allow for the direct localization of Met(O) without the typical procedures for disulfide bond reduction followed by -SH alkylation.

References

  1. 1.
    Berlett, B. S.; Stadtman, E. R. Protein Oxidation in Aging, Disease, and Oxidative Stress. J. Biol. Chem. 1997, 272(33), 20313–20316.CrossRefGoogle Scholar
  2. 2.
    Stadtman, E. R.; Levine, R. L. Protein Oxidation. Annu. N. Y. Acad. Sci. 2000, 899, 191–208.CrossRefGoogle Scholar
  3. 3.
    Stadtman, E. R.; Berlett, B. S. Reactive Oxygen-Mediated Protein Oxidation in Aging and Disease. Chem. Res. Toxicol. 1997, 10(5), 485–494.CrossRefGoogle Scholar
  4. 4.
    Vogt, W. Oxidation of Methionyl Residues in Proteins: Tools, Targets, and Reversal. Free Rad. Biol. Med. 1995, 18, 93–105.CrossRefGoogle Scholar
  5. 5.
    Gao, J.; Yin, D. H.; Yao, Y.; Sun, H.; Qin, Z.; Schöneich, C.; Williams, T. D.; Squier, T. C. Loss of Conformational Stability in Calmodulin Upon Methionine Oxidation. Biophys. J. 1998, 74, 1115–1134.CrossRefGoogle Scholar
  6. 6.
    Gao, J.; Yin, D.; Yao, Y.; Williams, T. D.; Squier, T. C. Progressive Decline in the Ability of Calmodulin Isolated from Aged Brain to Activate the Plasma Membrane Ca-ATPase. Biochemistry. 1998, 37, 9536–9548.CrossRefGoogle Scholar
  7. 7.
    Palmblad, M.; Westlind-Danielsson, A.; Bergquist, J. Oxidation of Methionine 35 Attenuates Formation of Amyloid β-Peptide 1–40 Oligomers. J. Biol. Chem. 2002, 277, 19506–19510.CrossRefGoogle Scholar
  8. 8.
    Kuo, Y.-M.; Webster, S.; Emmerling, M. R.; De Lima, N.; Roher, A. E. Irreversible Dimerization/Tetramerization and Post-translational Modifications Inhibit Proteolytic Degradation of A β Peptides of Alzheimer’s Disease. Biochim. Biophys. Acta. 1998, 1406, 291–296.Google Scholar
  9. 9.
    Hoshi, T.; Heinemann, S. H. Regulation of Cell Function by Methionine Oxidation and Reduction. J. Physiol. 2001, 531, 1–11.CrossRefGoogle Scholar
  10. 10.
    Stadtman, E. R.; Moskovitz, J.; Berlett, B. S.; Levine, R. L. Cyclic Oxidation and Reduction of Protein Methionine Residues is an Important Antioxidant Mechanism. Mol. Cell. Biochem. 2002, 234/235, 3–9.CrossRefGoogle Scholar
  11. 11.
    Ciorba, M. A.; Heinemann, S. H.; Weissbach, H.; Brot, N.; Hoshi, T. Modulation of Potassium Channel Function by Methionine Oxidation and Reduction. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 9932–9937.CrossRefGoogle Scholar
  12. 12.
    Marki, W.; Spiess, J.; Tache, Y.; Rivier, J. E. Total Solid-Phase Synthesis of Porcine Gut Gastrin Releasing Peptide (GRP), a Mammalian Bombesin. J. Am. Chem. Soc. 1981, 103, 3178–3185.CrossRefGoogle Scholar
  13. 13.
    Asano, T.; Ashida, M. Transepithelially Transported Pro-Phenoloxidase in the Cuticle of the Silkworm. Bombyx mori. J. Biol. Chem. 2001, 276, 11113–11125.Google Scholar
  14. 14.
    Schey, K. L.; Finley, E. L. Identification of Peptide Oxidation by Tandem Mass Spectrometry. Acc. Chem. Res. 2000, 33, 299–306.CrossRefGoogle Scholar
  15. 15.
    Lagerwerf, F. M.; van de Weert, M.; Heerma, W.; Haverkamp, J. Identification of Oxidized Methionine Peptides. Rapid Commun. Mass Spectrom. 1996, 10, 1905–1910.CrossRefGoogle Scholar
  16. 16.
    Morand, K.; Talbo, G.; Mann, M. Oxidation of Peptides During Electrospray Ionization. Rapid Commun. Mass Spectrom. 1993, 7, 738–743.CrossRefGoogle Scholar
  17. 17.
    Griffiths, S. W.; Cooney, C. L. Development of a Peptide Mapping Procedure to Identify and Quantify Methionine Oxidation in Recombinant Human α1-Antitrypsin. J. Chromatogr. A. 2002, 942, 133–143.CrossRefGoogle Scholar
  18. 18.
    Jiang, X.; Smith, J. B.; Abraham, E. C. Identification of a MS-MS Fragment Diagnostic for Methionine Sulfoxide. J. Mass Spectrum. 1996, 31, 1309–1310.CrossRefGoogle Scholar
  19. 19.
    Smith, J. B.; Jiang, X.; Abraham, E. C. Identification of Hydrogen Peroxide Oxidation Sites of αA- and αB-Crystallins. Free Rad. Res. 1997, 26, 103–111.CrossRefGoogle Scholar
  20. 20.
    Steen, H.; Mann, M. Similarity Between Condensed Phase and Gas Phase Chemistry: Fragmentation of Peptides Containing Oxidized Cysteine Residues and Its Implications for Proteomics. J. Am. Soc. Mass Spectrom. 2001, 12, 228–232.CrossRefGoogle Scholar
  21. 21.
    Kotiaho, T.; Eberlin, M. N.; Vainiotalo, P.; Kostianinen, R. Electrospray Mass and Tandem Mass Spectrometry Identification of Ozone Oxidation Products of Amino Acids and Small Peptides. J. Am. Soc. Mass Spectrom. 2000, 11, 526–535.CrossRefGoogle Scholar
  22. 22.
    Zhu, H.; Hunter, T. C.; Pan, S.; Yau, P. M.; Bradbury, E. M.; Chen, X. Residue-Specific Mass Signatures for the Efficient Detection of Protein Modifications by Mass Spectrometry. Anal. Chem. 2002, 74, 1687–1694.CrossRefGoogle Scholar
  23. 23.
    Hollemeyer, K.; Heinzle, E.; Tholey, A. Identification of Oxidized Methionine Residues in Peptides Containing Two Methionine Residues by Derivatization and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Proteomics. 2002, 2, 1524–1531.CrossRefGoogle Scholar
  24. 24.
    Busch, K. L.; Glish, G. L.; McLuckey, S. A. Mass Spectrometry/Mass Spectometry. Techniques and Applications of Tandem Mass Spectrometry (Monograph). VCH: New York, 1988.Google Scholar
  25. 25.
    Hunt, D. F.; Yates, J. R., III; Shabanowitz, J.; Winston, S.; Hauer, C. R. Protein Sequencing by Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 6233–6237.CrossRefGoogle Scholar
  26. 26.
    McLuckey, S. A.; Wells, J. M. Mass Analysis at the Advent of the 21st Century. Chem. Rev. 2001, 101, 571–606.CrossRefGoogle Scholar
  27. 27.
    Senko, M. W.; Speir, J. P.; McLafferty, F. W. Collisional Activation of Large Multiply Charged Ions Using Fourier Transform Mass Spectrometry. Anal. Chem. 1994, 68, 2801–2808.CrossRefGoogle Scholar
  28. 28.
    Turecek, F.; Drinkwater, D. E.; McLafferty, F. W. Gas-Phase Chemistry of CH3SOH, -CH2+SHOH, CH3SO·, and ·CH2SOH by Neutralization-Reionization Mass Spectrometry. J. Am. Chem. Soc. 1989, 111, 7696–7701.CrossRefGoogle Scholar
  29. 29.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  30. 30.
    Zubarev, R. A.; Kruger, N. A.; Fridriksson, E. K.; Lewis, M. A.; Horn, D. M.; Carpenter, B. K.; McLafferty, F. W. Electron Capture Dissociation of Gaseous Multiply-Charged Proteins is Favored at Disulfide Bonds and Other Sites of High Hydrogen Atom Affinity. J. Am. Chem. Soc. 1999, 121, 2857–2862.CrossRefGoogle Scholar
  31. 31.
    Zubarev, R. A.; Horn, D. A.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem. 2000, 72, 563–573.CrossRefGoogle Scholar
  32. 32.
    Horn, D. M. Ge Ying; McLafferty, F. W. Activated Ion Electron Capture Dissociation for Mass Spectral Sequencing of Larger (42 kDa) Proteins. Anal. Chem. 2000, 72, 4778–4784.CrossRefGoogle Scholar
  33. 33.
    McLafferty, F. W.; Horn, D. M.; Breuker, K.; Ge, Y.; Lewis, M. A.; Cerda, B.; Zubarev, R. A.; Carpenter, B. K. Electron Capture Dissociation of Gaseous Multiply Charged Ions by Fourier-Transform Ion Cyclotron Resonance. J. Am. Soc. Mass Spectrom. 2001, 12, 245–249.CrossRefGoogle Scholar
  34. 34.
    Ge, Y.; Lawhorn, B. G.; El-Naggar, M.; Strauss, E.; Park, J.-H.; Begley, T. P.; McLafferty, F. W. Top Down Characterization of Larger Proteins (45 kDa) by Electron Capture Dissociation Mass Spectrometry. J. Am. Chem. Soc. 2002, 124, 672–678.CrossRefGoogle Scholar
  35. 35.
    Sze, S. K.; Ge, Y.; Oh, H.-B.; McLafferty, F. W. Top-Down Mass Spectrometry of a 29-kDa Protein for Characterization of Any Posttranslational Modification to Within One Residue. Proc. Natl. Acad. Sci. U. S. A. 2002, 99(4), 1774–1779.CrossRefGoogle Scholar
  36. 36.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science. 1989, 246, 64–71.CrossRefGoogle Scholar
  37. 37.
    Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Primer. Mass Spectrom. Rev. 1998, 17, 1–36.CrossRefGoogle Scholar
  38. 38.
    Little, D. P.; Speir, J. P.; Senko, M. W.; O’Connor, P. B.; McLafferty, F. W. Infrared Multiphoton Dissociation of Large Multiply Charged Ions for Biomolecule Sequencing. Anal. Chem. 1994, 66, 2809–2815.CrossRefGoogle Scholar
  39. 39.
    Kelleher, N. L.; Zubarev, R. A.; Bush, K.; Furie, B.; Furie, B. C.; McLafferty, F. W.; Walsh, C. T. Localization of Labile Posttranslational Modifications by Electron Capture Dissociation: The Case of γ-Carboxyglutamic Acid. Anal. Chem. 1999, 71, 4250–4253.CrossRefGoogle Scholar
  40. 40.
    Stenballe, A.; Jensen, O. N.; Olsen, J. V.; Haselmann, K. F.; Zubarev, R. A. Electron Capture Dissociation of Singly and Multiply Phosphorylated Peptides. Rapid Commun. Mass Spectrom. 2000, 14, 1793–1800.CrossRefGoogle Scholar
  41. 41.
    Shi, S. D. H.; Hemling, M. E.; Carr, S. A.; Horn, D. M.; Lindh, I.; McLafferty, F. W. Phosphopeptide/Phosphoprotein Mapping by Electron Capture Dissociation Mass Spectrometry. Anal. Chem. 2001, 73, 19–22.CrossRefGoogle Scholar
  42. 42.
    Mirgorodskaya, E.; Roepstorff, P.; Zubarev, R. A. Localization of O-Glycosylation Sites in Peptides by Electron Capture Dissociation in a Fourier Transform Mass Spectrometer. Anal. Chem. 1999, 71, 4431–4436.CrossRefGoogle Scholar
  43. 43.
    Håkansson, K.; Cooper, H. J.; Emmett, M. R.; Costello, C. E.; Marshall, A. G.; Nilsson, C. L. Electron Capture Dissociation and Infrared Multiphoton Dissociation MS/MS of an N-Glycosylated Tryptic Peptide to Yield Complementary Sequence Information. Anal. Chem. 2001, 73, 4530–4536.CrossRefGoogle Scholar
  44. 44.
    Guan, Z. Identification and Localization of the Fatty Acid Modification in Ghrelin by Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2002, 13, 1941–1945.CrossRefGoogle Scholar
  45. 45.
    Wilm, M. S.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68, 1–8.CrossRefGoogle Scholar
  46. 46.
    Winger, B. E.; Campana, J. E. Characterization of Combinatorial Peptide Libraries by Electrospray Ionization Fourier Transform Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1811–1813.CrossRefGoogle Scholar
  47. 47.
    Marshall, A. G.; Wang, T. C. L.; Ricca, T. L. Tailored Excitation for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Chem. Soc. 1985, 107, 7893–7897.CrossRefGoogle Scholar
  48. 48.
    Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Sustained Off-Resonance Irradiation for Collision-Activated Dissociation Involving Fourier Transform Mass Spectrometry. Collision-Activated Dissociation Technique that Emulates Infrared Multiphoton Dissociation. Anal. Chim. Acta. 1991, 246, 211–225.CrossRefGoogle Scholar
  49. 49.
    Cooper, H. J.; Hudgins, R. R.; Håkansson, K.; Marshall, A. G. Characterization of Amino Acid Side Chain Losses in Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2002, 13, 241–249.CrossRefGoogle Scholar
  50. 50.
    Loo, J. A.; Edmonds, C. G.; Udseth, H. R.; Smith, R. D. Effect of Reducing Disulfide-Containing Proteins on Electrospray Ionization Mass Spectra. Anal. Chem. 1990, 62, 693–698.CrossRefGoogle Scholar
  51. 51.
    Axelsson, J.; Palmblad, M.; Håkansson, K.; Håakansson, P. Electron Capture Dissociation of Substance P Using a Commercially Available Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Rapid Commun. Mass Spectrom. 1999, 13, 474–477.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  1. 1.Department of Molecular ProfilingMerck Research LaboratoriesRahwayUSA

Personalised recommendations