Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry

  • Eric F. Strittmatter
  • P. Lee Ferguson
  • Keqi Tang
  • Richard D. Smith
Focus: Proteomics


We describe the application of capillary liquid chromatography (LC) time-of-flight (TOF) mass spectrometric instrumentation for the rapid characterization of microbial proteomes. Previously (Lipton et al., Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11049) the peptides from a series of growth conditions of Deinococcus radiodurans have been characterized using capillary LC MS/MS and accurate mass measurements which are captured as an accurate mass and time (AMT) tag database. Using this AMT tag database, detected peptides can be assigned using measurements obtained on a TOF due to the additional use of elution time data as a constraint. When peptide matches are obtained using AMT tags (i.e., using both constraints) unique matches of a mass spectral peak occurs 88% of the time. Not only are AMT tag matches unique in most cases, the coverage of the proteome is high; ∼3500 unique peptide AMT tags are found on average per capillary LC run. From the results of the AMT tag database search, ∼900 ORFs detected using LC-TOFMS, with ∼500 ORFs covered by at least two AMT tags. These results indicate that AMT database searches with modest mass and elution time criteria can provide proteomic information for approximately one thousand proteins in a single run of <3 h. The advantage of this method over using MS/MS based techniques is the large number of identifications that occur in a single experiment as well as the basis for improved quantitation. For MS/MS experiments, the number of peptide identifications is severely restricted because of the time required to dissociate the peptides individually. These results demonstrate the utility of the AMT tag approach using capillary LC-TOF MS instruments, and also show that AMT tags developed using other instrumentation can be effectively utilized.


Mass Accuracy Elution Time Accurate Mass Measurement Liquid Chromatography Separation Pacific Northwest National Laboratory 


  1. 1.
    Aebersold, R.; Goodlett, D. R. Chem. Rev. 2001, 101, 269.CrossRefGoogle Scholar
  2. 2.
    Tomer, K. B. Chem. Rev. 2001, 101, 297.CrossRefGoogle Scholar
  3. 3.
    Smith, R. D.; Barinaga, C. J.; Udseth, H. R. Anal. Chem. 1988, 60, 1948.CrossRefGoogle Scholar
  4. 4.
    Huang, E. C.; Henion, J. D. Anal. Chem. 1991, 63, 732.CrossRefGoogle Scholar
  5. 5.
    Deterding, L. J.; Parker, C. E.; Perkins, J. R.; Moseley, M. A.; Jorgenson, J. W.; Tomer, K. B. J. Chromatogr. 1991, 554, 329.CrossRefGoogle Scholar
  6. 6.
    Griffin, P. R.; Coffman, J. A.; Hood, L. E.; Yates, J. R. Int. J. Mass Spectrom. Ion Processes 1991, 111, 131.CrossRefGoogle Scholar
  7. 7.
    Hunt, D. F.; Alexander, J. E.; McCormack, A. L.; Martino, P. A.; Michel, H.; Shabanowitz, J.; Sherman, N.; Moseley, M. A.; Jorgenson, J. W.; Tomer, K. B. Mass Spectrometric Methods for Protein and Peptide Sequence Analysis. Techniques in Protein Chemistry II; Villafranca, J. J., Ed.; Academic Press: San Diego, 1991; 441.Google Scholar
  8. 8.
    Shen, Y.; Tolic, N.; Zhao, R.; Pasa-Tolic, L.; Li, L.; Berger, S. J.; Harkewicz, R.; Anderson, G. A.; Belov, M. E.; Smith, R. D. Anal. Chem. 2001, 73, 3011.CrossRefGoogle Scholar
  9. 9.
    Washburn, M. P.; Wolters, D.; Yates, J. R. Nat. Biotechnol. 2001, 19, 242.CrossRefGoogle Scholar
  10. 10.
    Smith, R. D.; Anderson, G. A.; Lipton, M. S.; Pasa-Tolic, L.; Shen, Y.; Conrads, T. P.; Veenstra, T. D.; Udseth, H. R. Proteomics 2002, 2, 513.CrossRefGoogle Scholar
  11. 11.
    Eng, J. K.; McCormack, A. L.; Yates, J. R. J. Am. Soc. Mass Spectrom. 1994, 5, 976.CrossRefGoogle Scholar
  12. 12.
    Perkins, D.; Pappin, D.; Creasy, D.; London, U. Electrophoresis 1999, 20, 3551.CrossRefGoogle Scholar
  13. 13.
    Petritis, K.; Kangas, L. J.; Ferguson, P. L.; Anderson, G. A.; Pasa-Tolic, L.; Lipton, M. S.; Auberry, K. J.; Strittmatter, E.; Shen, Y.; Zhao, R.; Smith, R. D. Anal. Chem., in press.Google Scholar
  14. 14.
    Griffin, T. J.; Han, D. K.; Gygi, S. P.; Rist, B.; Lee, H.; Aebersold, R.; Parker, K. C. J. Am. Soc. Mass Spectrom. 2001, 12, 1238.CrossRefGoogle Scholar
  15. 15.
    Pasa-Tolic, L.; Jensen, P. K.; Anderson, G. A.; Lipton, M. S.; Peden, K. K.; Martinovic, S.; Tolic, N.; Bruce, J. E.; Smith, R. D. J. Am. Chem. Soc. 1999, 121, 7949.CrossRefGoogle Scholar
  16. 16.
    Blom, K. J. Am. Soc. Mass Spectrom. 1998, 9, 789.CrossRefGoogle Scholar
  17. 17.
    Wiley, W. C.; McLaren, I. H. Rev. Sci. Instrum. 1955, 26, 1150.CrossRefGoogle Scholar
  18. 18.
    Mamyrin, B. A.; Kavantajev, V. J.; Shmikk, D. V.; Zagulin, V. A. Sov. Phys. JETP 1973, 37, 45.Google Scholar
  19. 19.
    Douglas, D. J.; French, J. B. J. Am. Soc. Mass Spectrom. 1992, 3, 398.CrossRefGoogle Scholar
  20. 20.
    Krutchinsky, A. N.; Loboda, A. V.; Spicer, V. L.; Dworschak, R.; Ens, W.; Standing, K. G. Rapid Commun. Mass Spectrom. 1998, 12, 508.CrossRefGoogle Scholar
  21. 21.
    Conrads, T. P.; Anderson, G. A.; Veenstra, T. D.; Pasa-Tolic, L.; Smith, R. D. Anal. Chem. 2000, 72, 3349.CrossRefGoogle Scholar
  22. 22.
    Smith, R. D.; Anderson, G. A.; Lipton, M. S.; Masselon, C.; Pasa-Tolic, L.; Shen, Y.; Udseth, H. R. OMICS 2002, 6, 61.CrossRefGoogle Scholar
  23. 23.
    Easterling, M. L.; Mize, T. H.; Amster, I. J. Anal. Chem. 1999, 71, 624.CrossRefGoogle Scholar
  24. 24.
    Gorshkov, M. V.; Masselon, C.; Anderson, G. A.; Udseth, H. R.; Harkewicz, R.; Smith, R. D. J. Am. Soc. Mass Spectrom. 2001, 12, 1169.CrossRefGoogle Scholar
  25. 25.
    Masselon, C.; Tolmachev, A.; Anderson, G.; Harkewicz, R.; Smith, R. J. Am. Soc. Mass Spectrom. 2002, 13, 99.CrossRefGoogle Scholar
  26. 26.
    Lipton, M. S.; Pasa-Tolic, L.; Anderson, G. A.; Anderson, D. J.; Auberry, D. L.; Battista, J. R.; Daly, M. J.; Fredrickson, J.; Hixson, K. K.; Kostandarithes, H.; Masselon, C.; Markillie, L. M.; Moore, R.; Romine, M. F.; Shen, Y.; Strittmatter, E.; Tolic, N.; Udseth, H. R.; Venkateswaran, A.; Wong, K. K.; Zhao, R.; Smith, R. D. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 11.CrossRefGoogle Scholar
  27. 27.
    White, O.; Eisen, J. A.; Heidelberg, J. F.; Hickey, E. K.; Peterson, J. D.; Dodson, R. J.; Haft, D. H.; Gwinn, M. L.; Nelson, W. C.; Richardson, D. L.; Moffat, K. S.; Qin, H.; Jiang, L.; Pamphile, W.; Crosby, M.; Shen, M.; Vamathevan, J. J.; Lam, P.; McDonald, L.; Utterback, T.; Zalewski, C.; Makarova, K. S.; Aravind, L.; Daly, M. J.; Minton, K. W.; Fleischmann, R. D.; Ketchum, K. A.; Nelson, K. E.; Salzberg, S.; Smith, H. O.; Venter, J. C.; Fraser, C. M. Science 1999, 286, 1571.CrossRefGoogle Scholar
  28. 28.
    Strittmatter, E.; Rodriguez, N.; Smith, R. D. Anal. Chem., in press.Google Scholar
  29. 29.
    Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. J. Am. Soc. Mass Spectrom. 2000, 11, 320.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  • Eric F. Strittmatter
    • 1
  • P. Lee Ferguson
    • 1
  • Keqi Tang
    • 1
  • Richard D. Smith
    • 1
  1. 1.Environmental and Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations