Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation

  • Tina Guina
  • Manhong Wu
  • Samuel I. Miller
  • Samuel O. Purvine
  • Eugene C. Yi
  • Jimmy Eng
  • David R. Goodlett
  • Ruedi Aebersold
  • Robert K. Ernst
  • Kimberly A. Lee
Focus: Proteomics


In this study, large-scale qualitative and quantitative proteomic technology was applied to the analysis of the opportunistic bacterial pathogen Pseudomonas aeruginosa grown under magnesium limitation, an environmental condition previously shown to induce expression of various virulence factors. For quantitative analysis, whole cell and membrane proteins were differentially labeled with isotope-coded affinity tag (ICAT) reagents and ICAT reagent-labeled peptides were separated by two-dimensional chromatography prior to analysis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) in an ion trap mass spectrometer (ITMS). To increase the number of protein identifications, gas-phase fractionation (GPF) in the m/z dimension was employed for analysis of ICAT peptides derived from whole cell extracts. The experiments confirmed expression of 1331 P. aeruginosa proteins of which 145 were differentially expressed upon limitation of magnesium. A number of conserved Gram-negative magnesium stress-response proteins involved in bacterial virulence were among the most abundant proteins induced in low magnesium. Comparative ICAT analysis of membrane versus whole cell protein indicated that growth of P. aeruginosa in low magnesium resulted in altered subcellular compartmentalization of large enzyme complexes such as ribosomes. This result was confirmed by 2-D PAGE analysis of P. aeruginosa outer membrane proteins. This study shows that large-scale quantitative proteomic technology can be successfully applied to the analysis of whole bacteria and to the discovery of functionally relevant biologic phenotypes.


  1. 1.
    Griffin, T. J.; Gygi, S. P.; Ideker, T.; Rist, B.; Eng, J.; Hood, L.; Aebersold, R. Complementary Profiling of Gene Expression at the Transcriptome and Proteome Levels in Saccharomyces cerevisiae. Mol. Cell Proteom 2002, 1, 323–333.CrossRefGoogle Scholar
  2. 2.
    Gygi, S. P.; Rochon, Y.; Franza, B. R.; Aebersold, R. Correlation Between Protein and mRNA Abundance in Yeast. Mol. Cell Biol 1999, 19, 1720–1730.Google Scholar
  3. 3.
    Ideker, T.; Thorsson, V.; Ranish, J. A.; Christmas, R.; Buhler, J.; Eng, J. K.; Bumgarner, R.; Goodlett, D. R.; Aebersold, R.; Hood, L. Integrated Genomic and Proteomic Analyses of a Systematically Perturbed Metabolic Network. Science 2001, 292, 929–934.CrossRefGoogle Scholar
  4. 4.
    Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R. Evaluation of Two-Dimensional Gel Electrophoresis-Based Proteome Analysis Technology. Proc. Natl. Acad. Sci. U.S.A 2000, 97, 9390–9395.CrossRefGoogle Scholar
  5. 5.
    Han, D. K.; Eng, J.; Zhou, H.; Aebersold, R. Quantitative Profiling of Differentiation-Induced Microsomal Proteins Using Isotope-Coded Affinity Tags and Mass Spectrometry. Nat. Biotechnol 2001, 19, 946–951.CrossRefGoogle Scholar
  6. 6.
    Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags. Nat. Biotechnol 1999, 17, 994–999.CrossRefGoogle Scholar
  7. 7.
    Bodey, G. P.; Bolivar, R.; Fainstein, V.; Jadeja, L. Infections Caused by Pseudomonas aeruginosa. Rev. Infect. Dis 1983, 5, 279–313.Google Scholar
  8. 8.
    Davis, P. B.; Drumm, M.; Konstan, M. W. Cystic Fibrosis. Am. J. Respir. Crit. Care Med 1996, 154, 1229–1256.Google Scholar
  9. 9.
    Burns, J. L.; Gibson, R. L.; McNamara, S.; Yim, D.; Emerson, J.; Rosenfeld, M.; Hiatt, P.; McCoy, K.; Castile, R.; Smith, A. L.; Ramsey, B. W. Longitudinal Assessment of Pseudomonas aeruginosa in Young Children with Cystic Fibrosis. J. Infect. Dis 2001, 183, 444–452.CrossRefGoogle Scholar
  10. 10.
    Ernst, R. K.; Yi, E. C.; Guo, L.; Lim, K. B.; Burns, J. L.; Hackett, M.; Miller, S. I. Specific Lipopolysaccharide Found in Cystic Fibrosis Airway Pseudomonas aeruginosa. Science 1999, 286, 1561–1565.CrossRefGoogle Scholar
  11. 11.
    Macfarlane, E. L.; Kwasnicka, A.; Ochs, M. M.; Hancock, R. E. PhoP-PhoQ homologues in Pseudomonas aeruginosa Regulate Expression of the Outer-Membrane Protein OprH and Polymyxin B Resistance. Mol. Microbiol 1999, 34, 305–316.CrossRefGoogle Scholar
  12. 12.
    Hajjar, A. M.; Ernst, R. K.; Tsai, J. H.; Wilson, C. B.; Miller, S. I. Human Toll-Like Receptor 4 Recognizes Host-Specific LPS Modifications. Nat. Immunol 2002, 3, 354–359.CrossRefGoogle Scholar
  13. 13.
    Singh, P. K.; Schaefer, A. L.; Parsek, M. R.; Moninger, T. O.; Welsh, M. J.; Greenberg, E. P. Quorum Sensing Signals Indicate that Cystic Fibrosis Lungs are Infected with Bacterial Biofilms. Nature 2000, 407, 762–764.CrossRefGoogle Scholar
  14. 14.
    Garcia-Vescovi, E.; Soncini, F. C.; Groisman, E. A. Mg2+ as an Extracellular Signal: Environmental Regulation of Salmonella virulence. Cell 1996, 84, 165–174.CrossRefGoogle Scholar
  15. 15.
    Yi, E. C.; Marelli, M.; Lee, H.; Purvine, S. O.; Aebersold, R.; Aitchison, J. D.; Goodlett, D. R. Approaching Complete Peroxisome Characterization by Gas-Phase Fractionation. Electrophoresis 2002, 23, 3205–3216.CrossRefGoogle Scholar
  16. 16.
    von Haller, P. D.; Donohoe, S.; Goodlett, D. R.; Aebersold, R.; Watts, J. D. Mass Spectrometric Characterization of Proteins Extracted from Jurkat T Cell Detergent-Resistant Membrane Domains. Proteomics 2001, 1, 1010–1021.CrossRefGoogle Scholar
  17. 17.
    Guina, T.; Yi, E. C.; Wang, H.; Hackett, M.; Miller, S. I. A PhoP-Regulated Outer-Membrane Protease of Salmonella typhimurium Promotes Resistance to α-Helical Antimicrobial Peptides. J. Bacteriol 2000, 182, 4077–4086.CrossRefGoogle Scholar
  18. 18.
    Calfee, M. W.; Coleman, J. P.; Pesci, E. C. Interference with Pseudomonas quinolone Signal Synthesis Inhibits Virulence Factor Expression by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A 2001, 98, 11633–11637.CrossRefGoogle Scholar
  19. 19.
    Pesci, E. C.; Milbank, J. B.; Pearson, J. P.; McKnight, S.; Kende, A. S.; Greenberg, E. P.; Iglewski, B. H. Quinolone Signaling in the Cell-to-Cell Communication System of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A 1999, 96, 11229–11234.CrossRefGoogle Scholar
  20. 20.
    Johnson, C. R.; Newcombe, J.; Thorne, S.; Borde, H. A.; Eales-Reynolds, L. J.; Gorringe, A. R.; Funnell, S. G.; McFadden, J. J. Generation and Characterization of a PhoP Homologue Mutant of Neisseria meningitidis. Mol. Microbiol 2001, 39, 1345–1355.CrossRefGoogle Scholar
  21. 21.
    Gunn, J. S.; Lim, K. B.; Krueger, J.; Kim, K.; Guo, L.; Hackett, M.; Miller, S. I. PmrA-PmrB-Regulated Genes Necessary for 4-Aminoarabinose Lipid A Modification and Polymyxin Resistance. Mol. Microbiol 1998, 27, 1171–1182.CrossRefGoogle Scholar
  22. 22.
    Guo, L.; Lim, K. B.; Poduje, C. M.; Daniel, M.; Gunn, J. S.; Hackett, M.; Miller, S. I. Lipid A Acylation and Bacterial Resistance Against Vertebrate Antimicrobial Peptides. Cell 1998, 95, 189–198.CrossRefGoogle Scholar
  23. 23.
    Guo, L.; Lim, K. B.; Gunn, J. S.; Bainbridge, B.; Darveau, R. P.; Hackett, M.; Miller, S. I. Regulation of Lipid A Modifications by Salmonella typhimurium Virulence Genes phoP-phoQ. Science 1997, 276, 250–253.CrossRefGoogle Scholar
  24. 24.
    Davies, D. G.; Parsek, M. R.; Pearson, J. P.; Iglewski, B. H.; Costerton, J. W.; Greenberg, E. P. The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm. Science 1998, 280, 295–298.CrossRefGoogle Scholar
  25. 25.
    Erickson, D. L.; Endersby, R.; Kirkham, A.; Stuber, K.; Vollman, D. D.; Rabin, H. R.; Mitchell, I.; Storey, D. G. Pseudomonas aeruginosa Quorum Sensing Systems May Control Virulence Factor Expression in the Lungs of Patients with Cystic Cibrosis. Infect. Immun 2002, 70, 1783–1790.CrossRefGoogle Scholar
  26. 26.
    Middleton, B.; Rodgers, H. C.; Camara, M.; Knox, A. J.; Williams, P.; Hardman, A. Direct Detection of N-acylhomoserine Lactones in Cystic Fibrosis Sputum. FEMS Microbiol. Lett 2002, 207, 1–7.CrossRefGoogle Scholar
  27. 27.
    Pearson, J. P.; Gray, K. M.; Passador, L.; Tucker, K. D.; Eberhard, A.; Iglewski, B. H.; Greenberg, E. P. Structure of the Autoinducer Required for Expression of Pseudomonas aeruginosa Virulence Genes. Proc. Natl. Acad. Sci. U.S.A 1994, 91, 197–201.CrossRefGoogle Scholar
  28. 28.
    van Delden, C.; Comte, R.; Bally, A. M. Stringent Response Activates Quorum Sensing and Modulates Cell Density-Dependent Gene Expression in Pseudomonas aeruginosa. J. Bacteriol 2001, 183, 5376–5384.CrossRefGoogle Scholar
  29. 29.
    Whiteley, M.; Parsek, M. R.; Greenberg, E. P. Regulation of Quorum Sensing by RpoS in Pseudomonas aeruginosa. J. Bacteriol 2000, 182, 4356–4360.CrossRefGoogle Scholar
  30. 30.
    D’Argenio, D. A.; Calfee, M. W.; Rainey, P. B.; Pesci, E. C. Autolysis and Autoaggregation in Pseudomonas aeruginosa Colony Morphology Mutants. J. Bacteriol 2002, 184, 6481–6489.CrossRefGoogle Scholar
  31. 31.
    Gallagher, L. A.; McKnight, S. L.; Kuznetsova, M. S.; Pesci, E. C.; Manoil, C. Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa. J. Bacteriol 2002, 184, 6472–6480.CrossRefGoogle Scholar
  32. 32.
    Randall, L. L.; Hardy, S. J. Synthesis of Exported Proteins by Membrane-Bound Polysomes Form Escherichia coli. Eur. J. Biochem 1977, 75, 43–53.CrossRefGoogle Scholar
  33. 33.
    Bell, A.; Hancock, R. E. Outer Membrane Protein H1 of Pseudomonas aeruginosa: Purification of the Protein and Cloning and Nucleotide Sequence of the Gene. J. Bacteriol 1989, 171, 3211–3217.Google Scholar
  34. 34.
    Baliga, N. S.; Pan, M.; Goo, Y. A.; Yi, E. C.; Goodlett, D. R.; Dimitrov, K.; Shannon, P.; Aebersold, R.; Ng, W. V.; Hood, L. Coordinate Regulation of Energy Transduction Modules in Halobacterium sp. Analyzed by a Global Systems Approach. Proc. Natl. Acad. Sci. U.S.A 2002, 99, 14913–14918.CrossRefGoogle Scholar
  35. 35.
    Shapiro, L.; McAdams, H. H.; Losick, R. Generating and Exploiting Polarity in Bacteria. Science 2002, 298, 1942–1946.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  • Tina Guina
    • 1
  • Manhong Wu
    • 2
  • Samuel I. Miller
    • 2
  • Samuel O. Purvine
    • 3
  • Eugene C. Yi
    • 3
  • Jimmy Eng
    • 3
  • David R. Goodlett
    • 3
  • Ruedi Aebersold
    • 3
  • Robert K. Ernst
    • 4
  • Kimberly A. Lee
    • 5
  1. 1.Department of Pediatrics, Division of Infectious DiseasesUniversity of WashingtonSeattleUSA
  2. 2.Departments of Microbiology, Medicine, and Genome SciencesUniversity of WashingtonSeattleUSA
  3. 3.Institute for Systems BiologySeattleUSA
  4. 4.Department of Medicine, Division of Infectious DiseasesUniversity of WashingtonSeattleUSA
  5. 5.Department of BiochemistryUniversity of WashingtonSeattleUSA

Personalised recommendations