Mass spectrometric determination of association constants of adenylate kinase with two noncovalent inhibitors

  • Jürg M. Daniel
  • Gregor McCombie
  • Silke Wendt
  • Renato Zenobi
Focus: Noncovalent Interactions


Noncovalent complexes between chicken muscle adenylate kinase and two inhibitors, P1,P4-di(adenosine-5′)tetraphosphate (Ap4A) and P1,P5-di(adenosine-5′) pentaphosphate (Ap5A), were investigated with electrospray ionization mass spectrometry under non-denaturing conditions. The nonconvalent nature and the specificity of the complexes are demonstrated with a number of control experiments. Titration experiments allowed the association constants for inhibitor binding to be determined. Problems with concentration dependent ion yields are circumvented by a data evaluation method that is insensitive to the overall ionization efficiency. The Ka values found were 9. 0 × 104 M−1 (Ap4A) and 4. 0 × 107 M−1 (Ap5A), respectively, in very good agreement with available literature data.


  1. 1.
    Siuzdak, G. The emergence of mass spectrometry in biochemical research. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 11290–11297.CrossRefGoogle Scholar
  2. 2.
    Smith, R. D.; Bruce, J. E.; Wu, Q.; Lei, Q. P. New mass spectrometric methods for the study of noncovalent associations of biopolymers. Chem. Soc. Rev. 1997, 26, 191–202.CrossRefGoogle Scholar
  3. 3.
    Loo, J. A. Studying noncovalent protein complexes by ESI MS. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  4. 4.
    Pramanik, B. N.; Bartner, P. L.; Mirza, U. A.; Liu, Y.-H.; Ganguly, A. K. ESI MS for the Study of Non-covalent Complexes: an Emerging Technology. J. Mass Spectrom. 1998, 33, 911–920.CrossRefGoogle Scholar
  5. 5.
    Hillenkamp, F. New Methods for the Study of Biomolecular Complexes. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998.Google Scholar
  6. 6.
    Farmer, T. B.; Caprioli, R. M. Determination of protein-protein interactions by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom,. 1998, 33, 697–704.CrossRefGoogle Scholar
  7. 7.
    Winston, R. L.; Fitzgerald, M. C. Mass Spectrometry as a readout of Protein structure and Function. Mass Spectrom. Rev. 1997, 16, 165–179.CrossRefGoogle Scholar
  8. 8.
    Przybylski, M.; Glocker, M. O. Electrospray Mass Spectrometry of Biomacromolecular Complexes with Noncovalent Interactions—New Analytical Perspectives for Supramolecular Chemistry and Molecular Recognition Processes. Angew. Chem.-Int. Edit. Engl. 1996, 35, 807–826.CrossRefGoogle Scholar
  9. 9.
    Woods, A. S.; Buchsbaum, J. C.; Worrall, T. A.; Berg, J. M.; Cotter, R. J. Matrix-Assisted Laser Desorption/Ionization of Noncovalently Bound Compounds. Anal. Chem. 1995, 67, 4462–4465.CrossRefGoogle Scholar
  10. 10.
    Strupat, K.; Sagi, D.; Bönisch, H.; Schäfer, G.; Peter-Katalinic, J. Oligomerization and Substrate Binding Studies of the Adenylate Kinase from Sulfolobus acidocaldarius by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Analyst. 2000, 125, 563–567.CrossRefGoogle Scholar
  11. 11.
    Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int. J. of Mass Spectrom. 2002, 216, 1–27.CrossRefGoogle Scholar
  12. 12.
    Rogniaux, H.; Van Dorsselaer, A.; Barth, P.; Biellmann, J. F.; Barbanton, J.; van Zandt, M.; Chevrier, B.; Howard, E.; Mitschler, A.; Potier, N.; Urzhumtseva, L.; Moras, D.; Podjarny, A. Binding of Aldose Reductase Inhibitors: Correlation of Crystallographic and Mass Spectrometric Studies. J. Am. Soc. Mass Spectrom. 1999, 10, 635–647.CrossRefGoogle Scholar
  13. 13.
    Fändrich, M.; Tito, M. A.; Leroux, M. R.; Rostom, A. A.; Hartl, F. U.; Dobson, C. M.; Robinson, C. V. Observation of the noncovalent assembly and disassembly pathways of the chaperone complex MtGimC by mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14151–14155.CrossRefGoogle Scholar
  14. 14.
    Nesatyy, V. J. Gas-phase binding of non-covalent protein complexes between bovine pacreatic trypsin inhibitor and its target enzymes studied by ESI tandem MS. J. Mass Spectrom. 2001, 36, 950–959.CrossRefGoogle Scholar
  15. 15.
    Jørgensen, T. J. D.; Delforge, D.; Remacle, J.; Bojesen, G.; Roepstorff, P. Collision-induced dissociation of noncovalent complexes between vancomycin antibiotics and peptide ligand stereoisomers: evidence for molecular recognition in the gas phase. Int. J. of Mass Spectrom. 1999, 188, 63–85.CrossRefGoogle Scholar
  16. 16.
    Rodgers, M. T.; Armentrout, P. B. Noncovalent Metal-Ligand Bond Energies as studied by Threshold Collision-induced Dissociation. Mass Spectrom. Rev. 2000, 19, 215–247.CrossRefGoogle Scholar
  17. 17.
    Rodgers, M. T.; Armentrout, P. B. Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies. J. Am. Chem. Soc. 2000, 122, 8548–8558.CrossRefGoogle Scholar
  18. 18.
    Strittmatter, E. F.; Schnier, P. D.; Klassen, J. S.; Williams, E. R. Dissociation energies of deoxyribose nucleotide dimer anions measured using blackbody infrared radiative dissociation. J. Am. Soc. Mass Spectrom. 1999, 10, 1095–1104.CrossRefGoogle Scholar
  19. 19.
    Schnier, P. D.; Klassen, J. S.; Strittmatter, E. F.; Williams, E. R. Activation Energies for Dissociation of Double Strand Oligonucleotide Anions: Evidence for Watson-Crick Base Pairing in Vacuo. J. Am. Chem. Soc. 1998, 120, 9605–9613.CrossRefGoogle Scholar
  20. 20.
    Garcia, B. A.; Ramirez, J.; Wong, S.; Lebrilla, C. B. Thermal dissociation of protonated cyclodextrin-amino acid complexes in the gas phase. Int. J. of Mass Spectrom. 2001, 210/211, 215–222.CrossRefGoogle Scholar
  21. 21.
    He, F.; Ramirez, J.; Garcia, B. A.; Lebrilla, C. B. Differentially heated capillary for thermal dissociation of noncovalently bound complexes produced by electrospray ionization. Int. J. of Mass Spectrom. 1999, 182, 261–273.CrossRefGoogle Scholar
  22. 22.
    Cheng, X. H.; Gao, Q. Y.; Smith, R. D.; Jung, K.-E.; Switzer, C. Comparison of 3′,5′- and 2′,5′-linked DNA duplex stabilities by electrospray ionization mass spectrometry. Chem. Commun. 1996, 747–748.Google Scholar
  23. 23.
    Jørgensen, T. J. D.; Staroske, T.; Roepstorff, P.; Williams, D. H.; Heck, A. J. R. Subtle Differences in molecular recognition between modified glycopeptide antibiotics and bacterial receptor peptides identified by ESI MS. J. Chem. Soc. Perkin Trans. 2. 1999, 1859–1863.Google Scholar
  24. 24.
    Jørgensen, T. J. D.; Roepstorff, P.; Heck, A. J. R. Direct Determination of Solution Binding Constants for Noncovalent Complexes between Bacterial Cell Wall Peptide Analogues and Vancomycin Group Antibiotics by Electrospray Ionization Mass Spectrometry. Anal. Chem. 1998, 70, 4427–4432.CrossRefGoogle Scholar
  25. 25.
    Kempen, E. C.; Brodbelt, J. S. A Method for the Determination of Binding Constants by ESI MS. Anal. Chem. 2000, 72, 5411–5416.CrossRefGoogle Scholar
  26. 26.
    Greig, M. J.; Gaus, H.-J.; Cummins, L. L.; Sasmor, H.; Griffey, R. H. Measurement of Macromolecular Binding Using Electrospray Mass Spectrometry. Determination of Dissociation Constants for Oligonucleotide-Serum Albumin Complexes. J. Am. Chem. Soc. 1995, 117, 10765–10766.CrossRefGoogle Scholar
  27. 27.
    Griffey, R. H.; Hofstadler, S. A.; Sannes-Lowery, K. A.; Ecker, D. J.; Crooke, S. T. Determinants of aminoglycoside-binding specificity for rRNA by using mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10129–10133.CrossRefGoogle Scholar
  28. 28.
    Eckart, K.; Spiess, J. Electrospray Ionization Mass Spectrometry of Biotin Binding Streptavidin. J. Am. Soc. Mass Spectrom. 1995, 6, 912–919.CrossRefGoogle Scholar
  29. 29.
    Carte, N.; Legendre, F.; Leize, E.; Potier, N.; Reeder, F.; Chottard, J.-C.; Van Dorsselaer, A. Determination by Electrospray Mass Spectrometry of the Outersphere Association Constants of DNA/Platinum Complexes Using 20-mer Oligonucleotides and ([Pt(NH3)4]2+, 2Cl-) or ([Pt(py)4]2+, 2Cl-). Anal. Biochem. 2000, 284, 77–86.CrossRefGoogle Scholar
  30. 30.
    Ayed, A.; Krutchinsky, A. N.; Ens, W.; Standing, K. G.; Duckworth, H. W. Quantitative Evaluation of Protein-Protein and Ligand-Protein Equilibria of a Large Allosteric Enzyme by Electrospray Ionization Time-of-flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 339–344.CrossRefGoogle Scholar
  31. 31.
    Lim, H.-K.; Hsieh, Y. L.; Ganem, B.; Henion, J. Recognition of Cell-wall Peptide Ligands by Vancomycin Group Antibiotics: Studies Using Ion Spray Mass Spectrometry. J. Mass Spectrom. 1995, 30, 708–714.CrossRefGoogle Scholar
  32. 32.
    Loo, J. A.; Hu, P.; McConnell, P.; Mueller, W. T. A Study of Src SH2 Domain Protein-Phosphopeptide Binding Interactions by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 234–243.CrossRefGoogle Scholar
  33. 33.
    Sannes-Lowery, K. A.; Griffey, R. H.; Hofstadler, S. A. Measuring Dissociation Constants of RNA and Aminoglycoside Antibiotics by Electrospray Ionization Mass Spectrometry. Anal. Biochem. 2000, 280, 264–271.CrossRefGoogle Scholar
  34. 34.
    Reinstein, J.; Vetter, I. R.; Schlichting, I.; Rösch, R.; Wittinghofer, A.; Goody, R. S. Fluorescence and NMR Investigations on the Ligand Binding Properties of Adenylate Kinase. Biochemistry. 1990, 29, 7440–7450.CrossRefGoogle Scholar
  35. 35.
    Haase, G. H. W.; Brune, M.; Reinstein, J.; Pai, E. F.; Pingoud, A.; Wittinghofer, A. Adenylate Kinase from Thermosensitive Escherichia coli Strains. J. Mol. Biol. 1989, 207, 151–162.CrossRefGoogle Scholar
  36. 36.
    Dahnke, T.; Tsai, M.-D. Mechanism of Adenylate Kinase. Structural and Functional Roles of the Conserved Arginine-97 and Arginine-132. J. Biol. Chem. 1994, 269, 8075–8081.Google Scholar
  37. 37.
    Lemaire, D.; Marie, G.; Serani, L.; Laprévote, O. Stabilization of Gase-Phase Noncovalent Macromolecular Complexes in Electrospray Mass Spectrometry Using Aqueous Triethylammonium Bicarbonate Buffer. Anal. Chem. 2001, 73, 1699–1706.CrossRefGoogle Scholar
  38. 38.
    Olcott, M. C.; Bradley, M. L.; Haley, B. E. Photoaffinity Labeling of Kinase with 2-Azido and 8-Azidoadenosine Triphosphate: Identification of Two Peptides from the ATP-Binding-Domain. Biochemistry. 1994, 33, 11935–11941.CrossRefGoogle Scholar
  39. 39.
    David, S. S.; Haley, B. E. ATP Nucleotidylation of Creatine Kinase. Biochemistry. 1999, 38, 8492–8500.CrossRefGoogle Scholar
  40. 40.
    Wallimann, T.; Turner, D. C.; Eppenberger, H. M. Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle. J. Cell Biol. 1977, 75, 297–317.CrossRefGoogle Scholar
  41. 41.
    Purich, D. L.; Fromm, H. J. Inihibition of Rabbit Skeletal Muscle Adenylate Kinase by the Transition State Analogue P1,P4-di(adenosine-5′)tetraphophate. Biochim. Biophys. Acta. 1972, 276, 563–567.Google Scholar
  42. 42.
    Feldhaus, P.; Fröhlich, T.; Goody, R. S.; Isakov, M.; Schirmer, R. H. Synthetic inhibitors of adenylate kinases in the assays for ATPases and phosphokinases. Eur. J. Biochem. 1975, 57, 197–204.CrossRefGoogle Scholar
  43. 43.
    Shi, Z.; Byeon, I. L.; Jiang, R.; Tsai, M.-D. Mechanism of Adenylate Kinase. What Can Be Learned from a Mutant Enzyme with Minor Perturbation in Kinetic Parameters?. Biochemistry. 1993, 32, 6450–6458.CrossRefGoogle Scholar
  44. 44.
    Müller, C. W.; Schulz, G. E. Structure of the Complex Between Adenylate Kinase from Escheriachia coli and the Inhibitor Ap5A Refined at 1.9A Resolution. J. Mol. Biol. 1992, 224, 159–177.CrossRefGoogle Scholar
  45. 45.
    Lienhard, G. E.; Secemski, I. I. P1,P5-Di(adenosine-5′)pentaphosphate, a Potent Multisubstrate Inhibitor of Adenylate Kinase. J. Biol. Chem. 1973, 248, 1121–1123.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  • Jürg M. Daniel
    • 1
  • Gregor McCombie
    • 1
  • Silke Wendt
    • 1
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry, Swiss Federal Institute of TechnologyETHZürichSwitzerland

Personalised recommendations