Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI?

Article

Abstract

In nano-ESI MS, the qualitative and quantitative characteristics of mass spectra vary considerably upon the use of different spraying conditions, i.e., aperture of the spraying needle and the voltage applied. The major parameters affected by the aperture size is the liquid flow rate which determines the initial droplet size and the current emitted upon the spray process, as described by different models of the ESI process. In the present study, the effect of flow rate on ion signals was studied systematically using mixtures of compounds with different physicochemical properties (i. e., detergent/oligosaccharide and oligosaccharide/peptide). For these model systems, the functional dependence of certain analyte-ion ratios upon the flow rate can be correlated to changes in analyte partition during droplet fission prior to ion release. Analyte suppression is practically absent at minimal flow rates below 20 nL/min.

References

  1. 1.
    Aleksandrov, M. L.; Gall, L. N.; Krasnov, N. V.; Nikolaev, V. I.; Pavlenko, V. A.; Shkurov, V. A. Extraction of Ions from Solutions at Atmospheric Pressure—Method of Mass Spectrometric Analysis of Bioorganic Compounds. Dok. Akad. Nauk SSSR 1984, 277, 379–383.Google Scholar
  2. 2.
    Yamashita, M.; Fenn, J. B. Electrospray Ion Source: Another Variation on the Free-Jet Theme. J. Phys. Chem. 1984, 88, 4451–4459.CrossRefGoogle Scholar
  3. 3.
    Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. Molecular Beams of Macroions. J. Chem. Phys. 1968, 49, 2240–2249.CrossRefGoogle Scholar
  4. 4.
    McLafferty, F. W.; Fridriksson, E. K.; Horn, D. M.; Lewis, M. A.; Zubarev, R. A. Biomolecule Mass Spectrometry. Science 1999, 284, 1289–1290.CrossRefGoogle Scholar
  5. 5.
    Bakhtiar, R.; Nelson, R. W. Electrospray Ionization and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Biochem. Pharmacol. 2000, 59, 891–905.CrossRefGoogle Scholar
  6. 6.
    Hofstadler, S. A.; Griffey, R. H. Analysis of Noncovalent Complexes of DNA and RNA by Mass Spectrometry. Chem. Rev. 2001, 101, 377–390.CrossRefGoogle Scholar
  7. 7.
    Aebersold, R.; Goodlett, D. R. Mass Spectrometry in Proteomics. Chem. Rev. 2001, 101, 269–295.CrossRefGoogle Scholar
  8. 8.
    Tang, L.; Kebarle, P. Dependence of Ion Intensity in Electrospray Mass Spectrometry on the Concentration of the Analytes in the Electrosprayed Solution. Anal. Chem. 1993, 65, 3654–3668.CrossRefGoogle Scholar
  9. 9.
    Wilm, M. S.; Mann, M. Electrospray and Taylor-Cone Theory, Dole’s Beam of Macromolecules at Last?. Int. J. Mass Spectrom. Ion Processes 1994, 136, 167–180.CrossRefGoogle Scholar
  10. 10.
    Wilm, M. S.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68, 1–8.CrossRefGoogle Scholar
  11. 11.
    Bahr, U.; Pfenninger, A.; Karas, M.; Stahl, B. High Sensitivity Analysis of Neutral Underivatized Oligosaccarides by Nano-Electrospray Mass Spectrometry. Anal. Chem. 1997, 69, 4530–4535.CrossRefGoogle Scholar
  12. 12.
    Juraschek, R.; Dülcks, T.; Karas, M. Nanoelectrospray—More Than Just a Minimized-Flow Electrospray Ionization Source. J. Am. Soc. Mass Spectrom. 1999, 10, 300–308.CrossRefGoogle Scholar
  13. 13.
    Fernandez de la Mora, J.; Loscertales, I. G. The Current Emitted by Highly Conducting Taylor Cones. J. Fluid Mech. 1994, 260, 155–184.CrossRefGoogle Scholar
  14. 14.
    Pfeifer, R. J.; Hendricks C. D., Jr. Parametric Studies of Electrohydrodynamic Spraying. AIAA J 1968, 6, 496–502.CrossRefGoogle Scholar
  15. 15.
    Enke, C. G. A Predictive Model for Matrix and Analyte Effects in Electrospray Ionization of Singly-Charged Ionic Analytes. Anal. Chem. 1997, 69, 4885–4893.CrossRefGoogle Scholar
  16. 16.
    Cech, N. B.; Enke, C. G. Relating Electrospray Ionization Response to Nonpolar Character of Small Peptides. Anal. Chem. 2000, 72, 2717–2723.CrossRefGoogle Scholar
  17. 17.
    Constantopoulos, T. L.; Jackson, G. S.; Enke, C. G. Challenges in Achieving a Fundamental Model for ESI. Anal. Chim. Acta 2000, 406, 37–52.CrossRefGoogle Scholar
  18. 18.
    Tang, K.; Smith, R. D. Physical/Chemical Separations in the Breakup of Highly Charged Droplets from Electrosprays. J. Am. Soc. Mass Spectrom. 2001, 12, 343–347.CrossRefGoogle Scholar
  19. 19.
    Schmidt, A.; Bahr, U.; Karas, M. The Influence of Pressure in the First Pumping Stage on Analyte Desolvation and Fragmentation in Nano-ESI MS. Anal. Chem. 2001, 73, 6040–6046.CrossRefGoogle Scholar
  20. 20.
    Raffaelli, A.; Bruins, A. P. Factors Affecting the Ionization Efficiency of Quarternary Ammonium Compounds in Electrospray/Ionspray Mass Spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 269–275.CrossRefGoogle Scholar
  21. 21.
    Lax, E., Ed.; D’Ans Lax Taschenbuch für Chemiker und Physiker. Springer Verlag: Berlin, 1967; p 818.Google Scholar
  22. 22.
    Conway, B. E., Ed.; Elektrochemische Tabellen. Govi Verlag GmbH: Frankfurt, 1957; p 45.Google Scholar
  23. 23.
    Weast, R. C., Ed.; Handbook of Chemistry and Physics. CRC Press: Cleveland, 1974; p F-42.Google Scholar
  24. 24.
    Kebarle, P.; Ho, Y. On the Mechanism of Electrospray Mass Spectrometry. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications; In: Cole, R. B., Ed.; John Wiley and Sons, Inc: New York, 1997; p 3.Google Scholar
  25. 25.
    Van Berkel, G. J. The Electrolytic Nature of Electrospray. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications; In: Cole, R. B., Ed.; John Wiley and Sons, Inc: New York, 1997; p 65.Google Scholar
  26. 26.
    Van Berkel, G. J. Insight into Analyte Electrolysis in an Electrospray Emitter from Chronopotentiometry Experiments and Mass Transport Calculations. J. Am. Soc. Mass Spectrom. 2000, 11, 951–960.CrossRefGoogle Scholar
  27. 27.
    Van Berkel, G. J. Electrolytic Deposition of Metals on to the High-Voltage Contact in an Electrospray Emitter: Implications for Gas-Phase Ion Formation. J. Mass Spectrom. 2000, 35, 773–783.CrossRefGoogle Scholar
  28. 28.
    Zhou, S.; Cook, K. D. A Mechanistic Study of Electrospray Mass Spectrometry: Charge Gradients within Electrospray Droplets and Their Influence on Ion Response. J. Am. Soc. Mass Spectrom. 2001, 12, 206–214.CrossRefGoogle Scholar
  29. 29.
    Colton, R. D.’ Agostino, A.; Traeger, J. C. Electrospray Mass Spectrometry Applied to Inorganic and Organometallic Chemistry. Mass Spectrom. Rev. 1995, 14, 79–106.CrossRefGoogle Scholar
  30. 30.
    Blades, A. T.; Jayaweera, P.; Ikonomou, M. G.; Kebarle, P. Studies of Alkaline Earth and Transition Metal++ Gas Phase Ion Chemistry. J. Chem. Phys. 1990, 92, 5900–5906.CrossRefGoogle Scholar
  31. 31.
    Kohler, M.; Leary, J. A. Gas-Phase Reactions of Doubly Charged Alkaline Earth and Transition Metal Complexes of Acetonitrile, Pyridine, and Methanol Generated by Electrospray Ionization. J. Am. Soc. Mass Spectrom. 1997, 8, 1124–1133.CrossRefGoogle Scholar
  32. 32.
    Kohler, M.; Leary, J. A. Gas Phase Reactions of Doubly Charged Alkaline Earth and Transition Metal(II)-Ligand Complexes Generated by Electrospray Ionization. Int. J. Mass Spectrom. Ion Processes 1997, 162, 17–34.CrossRefGoogle Scholar
  33. 33.
    Jayaweera, P.; Blades, A. T.; Ikonomou, M. G.; Kebarle, P. Production and Study in the Gas Phase of Multiply Charged Solvated or Coordinated Metal Ions. J. Am. Chem. Soc. 1990, 112, 2452–2454.CrossRefGoogle Scholar
  34. 34.
    Wang, G.; Cole, R. B. Mechanistic Interpretation of the Dependence of Charge State Distribution on Analyte Concentration in Electrospray Ionization Mass Spectrometry. Anal. Chem 1995, 67, 2892–2900.CrossRefGoogle Scholar
  35. 35.
    Wang, G.; Cole, R. B. Effects of Solvent and Counterion on Ion Pairing and Observed Charge States of Diquaternary Ammonium Salts in Electrospray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1996, 7, 1050–1058.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  1. 1.Institute for Pharmaceutical ChemistryJohann Wolfgang Goethe UniversityFrankfurt a.M.Germany
  2. 2.Department of Biology and ChemistryUniversity of BremenBremenGermany

Personalised recommendations