Study of protein modification by 4-hydroxy-2-nonenal and other short chain aldehydes analyzed by electrospray ionization tandem mass spectrometry

  • François Fenaille
  • Philippe A. Guy
  • Jean-Claude Tabet


A convenient way to study lipid oxidation products-modified proteins by means of suitable model systems has been investigated. As a model peptide, the oxidized B chain of insulin has been chemically modified by either 4-hydroxy-2-nonenal (HNE) or hexanal and the extent, sites, and structure of modifications were assessed by electrospray mass spectrometry. A reduction step, using either NaCNBH3 or NaBH4, was also studied to stabilize the alkylated compounds. From the data gathered, it appeared that NaCNBH3, when added at the beginning of incubation, dramatically influenced the HNE-induced modifications in terms of the addition mechanism (Schiff base formation instead of Michael addition) but also of the amino acid residues modified (N-terminal amino acid instead of histidine residues). However, by reducing the HNE-adducted species at the end of the reaction with NaBH4, the fragment ions obtained in the product ion scan experiments become more stable and thus, easier to interpret in terms of origin and mechanism involved. With regard to hexanal induced modifications, we have observed that hexanal addition under reductive conditions led to an extensive modification of the peptide backbone. Moreover, as confirmed by “in-source” collision followed by collision induced dissociation (CID) experiments on selected precursor ions (pseudo-MS3 experiments), N,N-di-alkylations were first observed on the N-terminal residue and further on Lys29 residue. On the other hand, compared to the native peptide, no significant changes in MS/MS fragmentation patterns (b and y ions series) were observed whatever the basic site modified by the aldehyde-addition.


  1. 1.
    Gray, J. I.; Monahan, F. J. Measurement of Lipid Oxidation in Meat and Meat Products. Trends Food Sci. Technol. 1992, 3, 315–319.CrossRefGoogle Scholar
  2. 2.
    Esterbauer, H. Cytotoxicity and Genotoxicity of Lipid-Oxidation Products. Am. J. Clin. Nutr. 1993, 57, 779S-785S.Google Scholar
  3. 3.
    Pokorny, J.; Luan, N. T.; Kondratenko, S. S.; Janicek, G. Changes of Sensory Value by Interaction of Alkanals With Amino Acids and Proteins. Nahrung 1976, 20, 267–272.CrossRefGoogle Scholar
  4. 4.
    Stapelfeldt, H.; Skibsted, L. H. Modification of β-Lactoglobulin by Aliphatic Aldehydes in Aqueous Solution. J. Dairy Res. 1994, 61, 209–219.CrossRefGoogle Scholar
  5. 5.
    Zamora, R.; Hidalgo, F. J. Inhibition of Proteolysis in Oxidized Lipid-Damaged Proteins. J. Agric. Food Chem. 2001, 49, 6006–6011.CrossRefGoogle Scholar
  6. 6.
    Uchida, K.; Toyokuni, S.; Nishikawa, K.; Kawakishi, S.; Hiroaki, O.; Hiai, H.; Stadtman, E. R. Michael Addition-Type 4-Hydroxy-2-Nonenal Adducts in Modified Low-Density Lipoproteins: Markers for Atherosclerosis. Biochemistry 1994, 33, 12487–12494.CrossRefGoogle Scholar
  7. 7.
    Bruenner, B. A.; Jones, A. D.; German, J. B. Direct Characterization of Protein Adducts of the Lipid Peroxidation Product 4-Hydroxy-2-Nonenal Using Electrospray Mass Spectrometry. Chem. Res. Toxicol. 1995, 8, 552–559.CrossRefGoogle Scholar
  8. 8.
    Uchida, K.; Stadtman, E. R. Modification of Histidine Residues in Proteins by Reaction With 4-Hydroxynonenal. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 4544–4548.CrossRefGoogle Scholar
  9. 9.
    McGirr, L. G.; Hadley, M.; Draper, H. H. Identification N a-Acetyl-e-(2-Propenal)Lysine as a Urinary Metabolite of Malondialdehyde. J. Biol. Chem. 1985, 260, 15427–15431.Google Scholar
  10. 10.
    Nair, V.; Vietti, D. E.; Cooper, C. S. Degenerative Chemistry of Malondialdehyde. Structure, Stereochemistry, and Kinetics of Formation of Enaminals From Reaction With Amino Acids. J. Am. Chem. Soc. 1981, 103, 3030–3036.CrossRefGoogle Scholar
  11. 11.
    Burcham, P. C.; Kuhan, Y. T. Introduction of Carbonyl Groups into Proteins by the Lipid Peroxidation Product, Malondialdehyde. Biochem. Biophys. Res. Commun. 1996, 220, 996–1001.CrossRefGoogle Scholar
  12. 12.
    Musatov, A.; Carroll, C. A.; Liu, Y. C.; Henderson, G. I.; Weintraub, S. T.; Robinson, N. C. Identification of Bovine Heart Cytochrome c Oxidase Subunits Modified by the Lipid Peroxidation Product 4-Hydroxy-2-Nonenal. Biochemistry 2002, 41, 8212–8220.CrossRefGoogle Scholar
  13. 13.
    Bruenner, B. A.; Jones, A. D.; German, J. B. Maximum Entropy Deconvolution of Heterogeneity in Protein Modification: Protein Adducts of 4-Hydroxy-2-Nonenal. Rapid Commun. Mass Spectrom. 1994, 8, 509–512.CrossRefGoogle Scholar
  14. 14.
    Bolgar, M. S.; Gaskell, S. J. Determination of the Sites of 4-Hydroxy-2-Nonenal Adduction to Protein by Electrospray Tandem Mass Spectrometry. Anal. Chem. 1996, 68, 2325–2330.CrossRefGoogle Scholar
  15. 15.
    Friguet, B.; Stadtman, E. R.; Szweda, L. I. Modification of Glucose-6-Phosphate Dehydrogenase by 4-Hydroxy-2-Nonenal. Formation of Cross-Linked Protein That Inhibits the Multicatalytic Protease. J. Biol. Chem. 1994, 269, 21639–21643.Google Scholar
  16. 16.
    Grace, J. M.; McDonald, T. L.; Roberts, R. J.; Kinter, M. Determination of Site-Specific Modifications of Glucose-6-Phosphate Dehydrogenase by 4-Hydroxy-2-Nonenal Using Matrix-Assisted Laser Desorption Time-of-Flight Mass Spectrometry. Free Radic. Res. 1996, 25, 23–29.CrossRefGoogle Scholar
  17. 17.
    Bertand-Harb, C.; Charrier, B.; Dalgalarrando, M.; Chobert, J. M.; Haertlé, T. Condensation of Glycosidic and Aromatic Strutures on Amino Groups of B-Lactoglobulin B Via Reductive Alkylation. Solubility and Emulfying Properties of the Protein Derivatives. Lait 1990, 71, 205–215.CrossRefGoogle Scholar
  18. 18.
    Lee, H. S.; Sen, L. C.; Clifford, A. J.; Whitaker, J. R.; Feeney, R. E. Preparation and Nutritional Properties of Caseins Covalently Modified with Sugars. Reductive Alkylation of Lysines With Glucose, Fructose, or Lactose. J. Agric. Food Chem. 1979, 27, 1094–1098.CrossRefGoogle Scholar
  19. 19.
    Smith, S. A.; Pestka, J. J.; Gray, J. I.; Smith, D. M. Production and Specificity of Polyclonal Antibodies to Hexanal-Lysine Adducts. J. Agric. Food Chem. 1999, 47, 1389–1395.CrossRefGoogle Scholar
  20. 20.
    Bolgar, M. S.; Yang, C. Y.; Gaskell, S. J. First Direct Evidence for Lipid/Protein Conjugation in Oxidized Human Low Density Lipoprotein. J. Biol. Chem. 1996, 271, 27999–28001.CrossRefGoogle Scholar
  21. 21.
    Requena, J. R.; Fu, M. X.; Ahmed, M. U.; Jenkins, A. J.; Lyons, T. J.; Baynes, J. W.; Thorpe, S. R. Quantification of Malondialdehyde and 4-Hydroxynonenal Adducts to Lysine Residues in Native and Oxidized Human Low-Density Lipoprotein. Biochem. J. 1997, 322, 317–325.CrossRefGoogle Scholar
  22. 22.
    Friguet, B.; Szweda, L. I. Inhibition of the Multicatalytic Proteinase (Proteasome) by 4-Hydroxy-2-Nonenal Cross-Linked Protein. FEBS Lett 1997, 405, 21–25.CrossRefGoogle Scholar
  23. 23.
    Refsgaard, H. H.; Tsai, L.; Stadtman, E. R. Modifications of Proteins by Polyunsaturated Fatty Acid Peroxidation Products. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 611–616.CrossRefGoogle Scholar
  24. 24.
    Ulberth, F.; Roubicek, D. Monitoring of Oxidative Deterioration of Milk Powder by Headspace Gas Chromatography. Int. Dairy J. 1995, 5, 523–531.CrossRefGoogle Scholar
  25. 25.
    Lehmann, W. D. Single Series Peptide Fragment Ion Spectra Generated by Two-Stage Collision-Induced Dissociation in a Triple Quadrupole. J. Am. Soc. Mass Spectrom. 1998, 9, 606–611.CrossRefGoogle Scholar
  26. 26.
    Biemann, K. Contributions of Mass Spectrometry to Peptide and Protein Structure. Biomed. Environ. Mass Spectrom. 1988, 16, 99–111.CrossRefGoogle Scholar
  27. 27.
    Cohn, J. A.; Tsai, L.; Friguet, B.; Szweda, L. I. Chemical Characterization of a Protein-4-Hydroxy-2-Nonenal Cross-Link: Immunochemical Detection in Mitochondria Exposed to Oxidative Stress. Arch. Biochem. Biophys. 1996, 328, 158–164.CrossRefGoogle Scholar
  28. 28.
    Willard, B. B.; Kinter, M. Effects of the Position of Internal Histidine Residues on the Collision-Induced Fragmentation of Triply Protonated Tryptic Peptides. J. Am. Soc. Mass Spectrom. 2001, 12, 1262–1271.CrossRefGoogle Scholar
  29. 29.
    Borch, R. F.; Bernstein, M. D.; Durst, H. D. The Cyanohydridoborate Anion as a Selective Reducing Agent. J. Am. Chem. Soc. 1971, 93, 2897–2904.CrossRefGoogle Scholar
  30. 30.
    Katta, V.; Chowdhury, S. K.; Chait, B. T. Use of a Single-Quadrupole Mass Spectrometer for Collision-Induced Dissociation Studies of Multiply Charged Peptide Ions Produced by Electrospray Ionization. Anal. Chem. 1991, 63, 174–178.CrossRefGoogle Scholar
  31. 31.
    van Dongen, W. D.; Wijk, J. I. T.; Green, B. N.; Heerma, W.; Haverkamp, J. Comparison Between Collision Induced Dissociation of Electrosprayed Protonated Peptides in the Up-Front Source Region and in a Low-Energy Collision Cell. Rapid Commun. Mass Spectrom. 1999, 13, 1712–1716.CrossRefGoogle Scholar
  32. 32.
    Harrison, A. G. Energy-Resolved Mass Spectrometry: A Comparison of Quadrupole Cell and Cone-Voltage Collision-Induced Dissociation. Rapid Commun. Mass Spectrom. 1999, 13, 1663–1670.CrossRefGoogle Scholar
  33. 33.
    Schey, K. L.; Schwartz, J. C.; Cooks, R. G. Observation of Sequence-Specific Peptide Fragmentation Using Extended Tandem Mass Spectrometry Experiments. Rapid Commun. Mass Spectrom. 1989, 3, 305–309.CrossRefGoogle Scholar
  34. 34.
    Thorne, G. C.; Gaskell, S. J. Elucidation of Some Fragmentations of Small Peptides Using Sequential Mass Spectrometry on a Hybrid Instrument. Rapid Commun. Mass Spectrom. 1989, 3, 217–221.CrossRefGoogle Scholar
  35. 35.
    Thorne, G. C.; Ballard, K. D.; Gaskell, S. J. Metastable Decomposition of Peptide [M+H]+ Ions via Rearrangement Involving Loss of the C-Terminal Amino Acid Residue. J. Am. Soc. Mass Spectrom. 1990, 1, 249–257.CrossRefGoogle Scholar
  36. 36.
    Sadagopan, N.; Watson, J. T. Mass Spectrometric Evidence for Mechanisms of Fragmentation of Charge-Derivatized Peptides. J. Am. Soc. Mass Spectrom. 2001, 12, 399–409.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  • François Fenaille
    • 1
  • Philippe A. Guy
    • 1
  • Jean-Claude Tabet
    • 2
  1. 1.Department of Quality and Safety AssuranceNestlé Research Center, Nestec Ltd.Lausanne 26Switzerland
  2. 2.Laboratoire de Chimie Structurale Organique et BiologiqueUniversity Pierre and Marie CurieParisFrance

Personalised recommendations