Ketalization of phosphonium ions by 1,4-dioxane: Selective detection of the chemical warfare agent simulant DMMP in mixtures using ion/molecule reactions

  • Hao Chen
  • Xubin Zheng
  • R. Graham Cooks


Phosphonium ions CH3P(O)OCH 3 + (93 Th) and CH3OP(O)OCH 3 + (109 Th) react with 1,4-dioxane to form unique cyclic ketalization products, 1,3,2-dioxaphospholanium ions. By contrast, a variety of other types of ions having multiple bonds, including the acylium ions CH3CO+ (43 Th), CH3OCO+ (59 Th), (CH3)2NCO+ (72 Th), and PhCO+ (105 Th), the iminium ion H2C=NHC2H 5 + (58 Th) and the carbosulfonium ion H2C=SC2H 5 + (75 Th) do not react with 1,4-dioxane under the same conditions. The characteristic ketalization reaction can also be observed when CH3P(OH)(OCH3) 2 + , viz. protonated dimethyl methylphosphonate (DMMP), collides with 1,4-dioxane, as a result of fragmentation to yield the reactive phosphonium ion CH3P(O)OCH 3 + (93 Th). This novel ion/molecule reaction is highly selective to phosphonium ions and can be applied to identify DMMP selectively in the presence of ketone, ester, and amide compounds using a neutral gain MS/MS scan. This method of DMMP analysis can be applied to aqueous solutions using electrospray ionization; it shows a detection limit in the low ppb range and a linear response over the range 10 to 500 ppb.


DMMP Chemical Warfare Agent Propionamide Cyclic Acetal Trimethyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Groenewold, G. S.; Todd, P. J. Detection of Gaseous Organophosphorus Compounds Using Secondary Ion Mass Spectrometry. Anal. Chem. 1985, 57, 886.CrossRefGoogle Scholar
  2. 2.
    Ketkar, S. N.; Penn, S. M.; Fite, W. L. Influence of Coexisting Analytes in Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 1991, 63, 924.CrossRefGoogle Scholar
  3. 3.
    Huang, M.-W.; Chei, H.-L.; Huang, J.-P.; Shiea, J. Application of Organic Solvents as Matrixes to Detect Air-Sensitive and Less Polar Compounds Using Low-Temperature Secondary Ion Mass Spectrometry. Anal. Chem. 1999, 71, 2901.CrossRefGoogle Scholar
  4. 4.
    Agueera, A.; Contreras, M.; Crespo, J.; Fernandez-Alba, A. R. Multiresidue Method for the Analysis of Multiclass Pesticides in Agricultural Products by Gas Chromatography-Tandem Mass Spectrometry. Analyst 2002, 127, 347.CrossRefGoogle Scholar
  5. 5.
    Charles, L.; Riter, L. S.; Cooks, R. G. Direct Analysis of Semivolatile Organic Compounds in Air by Atmospheric Pressure Chemical Ionization Mass Spectrometry. Anal. Chem. 2001, 73, 5061.CrossRefGoogle Scholar
  6. 6.
    Schubert, H.; Guntow, U.; Hofmann, K.; Schloegl, R. Performance and Application Potential of Ion/Molecule Reaction Mass Spectrometry (IMR-MS) in the Analysis of Complex Gas Mixtures. Fresenius J. Anal. Chem. 1996, 356, 127.Google Scholar
  7. 7.
    Brodbelt, J. S. Analytical Applications of Ion/Molecule Reactions. Mass Spectrom. Rev. 1997, 16, 91.CrossRefGoogle Scholar
  8. 8.
    Cooks, R. G.; Rockwood, A. L. The Thomson-A Suggested Unit for Mass Spectroscopists. Rapid Commun. Mass Spectrom. 1991, 5, 93.Google Scholar
  9. 9.
    Hodges, R. V.; McDonnell, T. J.; Beauchamp, J. L. Properties and Reactions of Trimethyl Phosphite, Trimethyl Phosphate, Triethyl Phosphate, and Trimethyl Phosphorothionate by Ion Cyclotron Resonance Spectroscopy. J. Am. Chem. Soc. 1980, 102, 1327.CrossRefGoogle Scholar
  10. 10.
    Morizur, J.-P.; Gevrey, S.; Luna, A.; Taphanel, M.-H. Gas-Phase Ion/Molecule Reactions of Trimethyl Phosphite with the Phosphonium Ion OP(OCH3)2+ in a Quadrupole Ion Trap. J. Mass Spectrom. 1997, 32, 550.CrossRefGoogle Scholar
  11. 11.
    Gevrey, S.; Luna, A.; Taphanel, M.-H.; Tortajada, J.; Morizur, J.-P. Experimental and Theoretical Studies of the Gas-Phase Reactivity of the (HO)2P=O+ Phosphonium Ions towards Methanol. Int. J. Mass Spectrom. 2000, 195/196, 545.CrossRefGoogle Scholar
  12. 12.
    Leclerc, E.; Buchmann, W.; Taphanel, M.-H.; Morizur, J.-P. Gas-Phase Ion/Molecule Reactions between Dimethoxyphosphonium Ions and Aromatic Hydrocarbons. Rapid Commun. Mass Spectrom. 2002, 16, 686.CrossRefGoogle Scholar
  13. 13.
    Gal, J.-F.; Herreros, M.; Maria, P. C.; Operti, L.; Pettigiani, C.; Rabezzana, R.; Vaglio, G. A. Gas-Phase Ion/Molecule Reactions in Organophosphorus Esters. J. Mass Spectrom. 1999, 34, 1296.CrossRefGoogle Scholar
  14. 14.
    Thoen, K. K.; Gao, L.; Ranatunga, T. D.; Vainiotalo, P.; Kenttämaa, H. I. Stereoselective Chemical Ionization Mass Spectrometry: Reactions of CH3OPOCH3+ with Cyclic Vicinal Diols. J. Org. Chem. 1997, 62, 8702.CrossRefGoogle Scholar
  15. 15.
    Kenttämaa, H. I.; Cooks, R. G. Tautomer Characterization by Energy Resolved Mass Spectrometry. Dimethyl Phosphite and Dimethyl Phosphonate Ions. J. Am. Chem. Soc. 1985, 107, 1881.CrossRefGoogle Scholar
  16. 16.
    Li, R.; Schweighofer, A.; Keck, H.; Kuchen, W.; Kenttämaa, H. I. The Radical Cation of Trimethylphosphine Oxide. Int. J. Mass Spectrom. Ion Processes 1996, 157/158, 293.CrossRefGoogle Scholar
  17. 17.
    Zeller, L. Farrell, J., Jr.; Kenttämaa, H. I.; Vainiotalo, P. Long-Lived Radical Cations of Simple Organophosphates Isomerize Spontaneously to Distonic Structures in the Gas Phase. J. Am. Chem. Soc. 1992, 114, 1205.CrossRefGoogle Scholar
  18. 18.
    Lum, R. C.; Grabowski, J. J. Carbon versus Phosphorus Site Selectivity in the Gas-Phase Anion/Molecule Reactions of Dimethyl Methylphosphonate. J. Am. Chem. Soc. 1993, 115, 7823.CrossRefGoogle Scholar
  19. 19.
    Faye, T.; Mathurin, J. C.; Brunot, A.; Tabet, J. C. High-Pressure Ion Source Combined with an In-Axis Ion Trap Mass Spectrometer. 2. Application of Selective Low-Pressure Negative Ion Chemical Ionization. Anal. Chem. 2000, 72, 5063.CrossRefGoogle Scholar
  20. 20.
    Steiner, V.; Daoust-Maleval, I.; Tabet, J.-C. Study of Gas-Phase Reactivity of Positive and Negative Even-Electron Ions Prepared from Diethylmethyl Phosphonate Ester in an External Chemical Ionization Source of Orthogonal Tandem Quadrupole/Ion Trap Instrument. Int. J. Mass Spectrom. 2000, 195/196, 121.CrossRefGoogle Scholar
  21. 21.
    Wang, F.; Ma, S.; Tao, W. A.; Cooks, R. G. Replacement of C-O by P-O in Cyclic Acetals and Ketals. Angew. Chem. Int. Ed. Engl. 1999, 38, 386.CrossRefGoogle Scholar
  22. 22.
    Eberlin, M. N.; Cooks, R. G. Gas-Phase Oxirane to Acylium Ions on Reaction with 1,3-Dioxolanes Elucidated by Tandem and Triple Stage Mass Spectrometric Experiments. Org. Mass Spectrom. 1993, 28, 679.CrossRefGoogle Scholar
  23. 23.
    Eberlin, M. N. Triple-Stage Pentaquadrupole (QqQqQ) Mass Spectrometry and Ion/Molecule Reactions. Mass Spectrom. Rev. 1997, 16, 113.CrossRefGoogle Scholar
  24. 24.
    Moraes, L. A. B.; Pimpim, R. S.; Eberlin, M. N. Novel Ketalization Reaction of Acylium Ions with Diols and Analogues in the Gas Phase. J. Org. Chem. 1996, 61, 8726.CrossRefGoogle Scholar
  25. 25.
    Moraes, L. A. B.; Mendes, M. A.; Sparrapan, R.; Eberlin, M. N. Transacetalization with Gaseous Carboxonium and Carbosulfonium Ions. J. Am. Soc. Mass Spectrom. 2001, 12, 14.CrossRefGoogle Scholar
  26. 26.
    Moraes, L. A. B.; Eberlin, M. N. Ketalization of Gaseous Acylium Ions. J. Am. Soc. Mass Spectrom. 2001, 12, 150.CrossRefGoogle Scholar
  27. 27.
    Moraes, L. A. B.; Gozzo, F. C.; Eberlin, M. N.; Vainiotalo, P. Transacetalization with Acylium Ions. A Structurally Diagnostic Ion/Molecule Reaction for Cyclic Acetals and Ketals in the Gas Phase. J. Org. Chem. 1997, 62, 5096.CrossRefGoogle Scholar
  28. 28.
    Moraes, L. A. B.; Eberlin, M.N.; Marcos, N. Structurally Diagnostic Ion/Molecule Reactions: Acylium Ions with α-, β-, and γ-Hydroxy Ketones. J. Mass Spectrom., 2002, 162.Google Scholar
  29. 29.
    Carvalho, M. C.; Juliano, V. F.; Kascheres, C.; Eberlin, M. N. Gas Phase Chemistry of the Heterocumulene Cations O=C=N+=C=O and O=C=C=N+=O. J. Chem. Soc. Perkin Trans. 2 1997, 11, 2347.CrossRefGoogle Scholar
  30. 30.
    Moraes, L. A. B.; Eberlin, M. N. Dehydrobenzoyl Cations: Distonic Ions with Dual Free Radical and Acylium Ion Reactivity. J. Am. Chem. Soc. 1998, 120, 11136.CrossRefGoogle Scholar
  31. 31.
    Sparrapan, R.; Mendes, M. A.; Eberlin, M. N. Double Transacetalization of Diacylium Ions. J. Mass Spectrom. 2000, 35, 189.CrossRefGoogle Scholar
  32. 32.
    Moraes, L. A. B.; Eberlin, M. N. Acyclic Distonic Acylium Ions: Dual Free Radical and Acylium Ion Reactivity in a Single Molecule. J. Am. Soc. Mass Spectrom. 2000, 11, 697.CrossRefGoogle Scholar
  33. 33.
    Gozzo, F. C.; Sorrilha, A. E. P. M.; Eberlin, M. N. The Generation, Stability, Dissociation and Ion/Molecule Chemistry of Sulfinyl Cations in the Gas Phase. J. Chem. Soc. Perkin Trans. 2 1996, 4, 587.CrossRefGoogle Scholar
  34. 34.
    Moraes, L. A. B.; Eberlin, M. N. Transacetalization of 1,3-Dioxane with Acylium and Sulfinyl Cations in the Gas Phase. J. Chem. Soc. Perkin Trans. 2 1997, 10, 2015.Google Scholar
  35. 35.
    Tao, W. A.; Wang, F.; Denault, J. W.; Cooks, R. G. Synthesis of Silicon Heterocycles via Silylium Ion Reactions with Cyclic Acetals and Ketals. J. Chem. Soc. Perkin Trans. 2 1999, 11, 2325.CrossRefGoogle Scholar
  36. 36.
    Wang, F.; Tao, W. A.; Gozzo, F. C.; Eberlin, M. N.; Cooks, R. G. Synthesis of B- and P-Heterocycles by Reaction of Cyclic Acetals and Ketals with Borinium and Phosphonium Ions. J. Org. Chem. 1999, 64, 3213.CrossRefGoogle Scholar
  37. 37.
    Tao, W. A.; Zheng, X.; Cooks, R. G. Synthesis of B,N,O-Containing Heterocycles via Eberlin Reaction of Dimethylamino Borinium Ion with Cyclic Acetals and Ketals. J. Mass Spectrom. 2000, 35, 1215.CrossRefGoogle Scholar
  38. 38.
    Eberlin, M. N.; Morgon, N. H.; Yang, S. S.; Shay, B. J.; Cooks, R. G. Polar [4+ 2+] Diels-Alder Cycloaddition to Nitrilium and Immonium Ions in the Gas Phase: Applications of Multiple Stage Mass Spectrometry in a Pentaquadrupole Instrument. J. Am. Soc. Mass Spectrom. 1995, 6, 1.CrossRefGoogle Scholar
  39. 39.
    Bell, A. J.; Despeyroux, D.; Watts, J. M. P. Fragmentation and Reactions of Organophosphate Ions Produced by Electrospray Ionization. Int. J. Mass Spectrom. Ion Processes 1997, 165/166, 533.CrossRefGoogle Scholar
  40. 40.
    McGall, G. H.; McClelland, R. A. Kinetics and Mechanism of the Hydrolysis of a (5,6)-Spirophosphorane. Thermodynamics of the Hydrolysis of Cyclic Five-Membered and Six-Membered Phosphonium Ions. Can. J. Chem. 1991, 69, 2064.CrossRefGoogle Scholar
  41. 41.
    Cole, M. J.; Enke, C. G. Fast Atom Bombardment Tandem Mass Spectrometry Employing Ion/Molecule Reactions for the Differentiation of Phospholipid Classes. J. Am. Soc. Mass Spectrom. 1991, 2, 470.CrossRefGoogle Scholar
  42. 42.
    Schwartz, J. C.; Wade, A. P.; Enke, C. G.; and Cooks, R. G. Systematic Delineation of Scan Modes in Multidimensional Mass Spectrometry. Anal. Chem. 1990, 62, 1809.CrossRefGoogle Scholar
  43. 43.
    Riter, L. S.; Takats, Z.; Cooks, R. G. Single-Sided Membrane Introduction Mass Spectrometry for On-Line Determination of Semi-Volatile Organic Compounds in Air. Analyst 2001, 126, 1980.CrossRefGoogle Scholar
  44. 44.
    McLafferty, F. W.; Stauffer, D. B. The Wiley/NBS Registry of Mass Spectral Data Vol. I. John Wiley and Sons, 1989, p 239.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations