Journal of the American Society for Mass Spectrometry

, Volume 13, Issue 12, pp 1443–1447

Identification and localization of the fatty acid modification in ghrelin by electron capture dissociation



Electron capture dissociation (ECD) has been demonstrated to be an effective fragmentation technique for characterizing the site and structure of the fatty acid modification in ghrelin, a 28-residue growth-hormone-releasing peptide that has an unusual ester-linked n-octanoyl (C8:0) modification at Ser-3. ECD cleaves 21 of 23 possible backbone amine bonds, with the product ions (c and z* ions) covering a greater amino acid sequence than those obtained by collisionally activated dissociation (CAD). Consistent with the ECD nonergodic mechanism, the ester-linked octanoyl group is retained on all backbone cleavage product ions, allowing for direct localization of this labile modification. In addition, ECD also induces the ester bond cleavage to cause the loss of octanoic acid from the ghrelin molecular ion; the elimination process is initiated by the capture of an electron at the protonated ester group, which is followed by the radical-site-initiated reaction known as α-cleavage. The chemical composition of the attached fatty acid can be directly obtained from the accurate Fourier transform ion cyclotron resonance (FTICR) mass measurement of the ester bond cleavage product ions.


  1. 1.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  2. 2.
    Zubarev, R. A.; Horn, D. A.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem. 2000, 72, 563–573.CrossRefGoogle Scholar
  3. 3.
    McLafferty, F. W.; Horn, D. M.; Breuker, K.; Ge, Y.; Lewis, M. A.; Cerda, B.; Zubarev, R. A.; Carpenter, B. K. Electron Capture Dissociation of Gaseous Multiply Charged Ions by Fourier-Transform Ion Cyclotron Resonance. J. Am. Soc. Mass Spectrom. 2001, 12, 245–249.CrossRefGoogle Scholar
  4. 4.
    Cerda, B. A.; Breuker, K.; Horn, D. M.; McLafferty, F. W. Charge/Radical Site Initiation vs. Coulombic Repulsion for Cleavage of Multiply Charged Ions. Charge Solvation in Poly(alkene glycol) Ions. J. Am. Soc. Mass Spectrom. 2001, 12, 565–570.CrossRefGoogle Scholar
  5. 5.
    Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. Automated de Novo Sequencing of Proteins by Tandem High-Resolution Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10313–10317.CrossRefGoogle Scholar
  6. 6.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  7. 7.
    Comisarow, M. B.; Marshall, A. G. Fourier Transform Ion Cyclotron Resonance [FT-ICR] Spectroscopy. Chem. Phys. Lett. 1974, 25, 282–283.CrossRefGoogle Scholar
  8. 8.
    Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Fourier Transform Ion Cyclotron Resonance Mass Apectrometry: A Primer. Mass Spectrom. Rev. 1998, 17, 1–36.CrossRefGoogle Scholar
  9. 9.
    Busch, K. L.; Glish, G. L.; McLuckey, S. A. Mass Spectrometry/Mass Spectometry. Techniques and Applications of Tandem Mass Spectrometry. VCH: New York, 1988, 333.Google Scholar
  10. 10.
    Biemann, K.; Papayannopoulos, I. A. Amino Acid Sequencing of Proteins. Acc. Chem. Res. 1994, 27, 370–378.CrossRefGoogle Scholar
  11. 11.
    Hunt, D. F.; Yates, J. R., III; Shabanowitz, J.; Winston, S.; Hauer, C. R. Protein Sequencing by Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 6233–6237.CrossRefGoogle Scholar
  12. 12.
    Loo, J. A.; Udseth, H. R.; Smith, R. D. Primary Sequence Information from Intact Proteins by Electrospray Ionization Tandem Mass Spectrometry. Science 1990, 248, 201–204.CrossRefGoogle Scholar
  13. 13.
    McLuckey, S. A.; Wells, J. M. Mass Analysis at the Advent of the 21st Century. Chem. Rev. 2001, 101, 571–606.CrossRefGoogle Scholar
  14. 14.
    Senko, M. W.; Speir, J. P.; McLafferty, F. W. Collisional Activation of Large Multiply Charged Ions Using Fourier Transform Mass Spectrometry. Anal. Chem. 1994, 68, 2801–2808.CrossRefGoogle Scholar
  15. 15.
    McCormack, A. L.; Jones, J. L.; Wysocki, V. H. Surface-Induced Dissociation of Multiply Protonated Peptides. J. Am. Soc. Mass Spectrom. 1992, 3, 859–862.CrossRefGoogle Scholar
  16. 16.
    Little, D. P.; Speir, J. P.; Senko, M. W.; O’Connor, P. B.; McLafferty, F. W. Infrared Multiphoton Dissociation of Large Multiply Charged Ions for Biomolecule Sequencing. Anal. Chem. 1994, 66, 2809–2815.CrossRefGoogle Scholar
  17. 17.
    Dunbar, R. C.; McMahon, T. B. Activation of Unimolecular Reactions by Ambient Blackbody Radiation. Science 1998, 279, 194–197.CrossRefGoogle Scholar
  18. 18.
    Price, W. D.; Schnier, P. D.; Williams, E. R. Tandem Mass Spectrometry of Large Biomolecule Ions by Blackbody Infrared Radiative Dissociation. Anal. Chem. 1996, 68, 859–866.CrossRefGoogle Scholar
  19. 19.
    Guan, Z.; Kelleher, N. L.; O’Connor, P. B.; Aaserud, D. J.; Little, D. P.; McLafferty, F. W. 193 nm Photodissociation of Larger Multiply-Charged Biomolecules. Int. J. Mass Spectrom. Ion Processes 1996, 157/158, 357–364.CrossRefGoogle Scholar
  20. 20.
    Kelleher, N. L.; Zubarev, R. A.; Bush, K.; Furie, B.; Furie, B. C.; McLafferty, F. W.; Walsh, C. T. Localization of Labile Post-translational Modifications by Electron Capture Dissociation: The Case of γ-Carboxyglutamic Acid. Anal. Chem. 1999, 71, 4250–4253.CrossRefGoogle Scholar
  21. 21.
    Mirgorodskaya, E.; Roepstorff, P.; Zubarev, R. A. Localization of O-Glycosylation Sites in Peptides by Electron Capture Dissociation in a Fourier Transform Mass Spectrometer. Anal. Chem. 1999, 71, 4431–4436.CrossRefGoogle Scholar
  22. 22.
    Håkansson, K.; Cooper, H. J.; Emmett, M. R.; Costello, C. E.; Marshall, A. G.; Nilsson, C. L. Electron Capture Dissociation and Infrared Multiphoton Dissociation MS/MS of an N-Glycosylated Tryptic Peptide to Yield Complementary Sequence Information. Anal. Chem. 2001, 73, 4530–4536.CrossRefGoogle Scholar
  23. 23.
    Haselmann, K. F.; Budnik, B. A.; Olsen, J. V.; Nielsen, M. L.; Reis, C. A.; Clausen, H.; Johnsen, A. H.; Zubarev, R. A. Advantages of External Accumulation for Electron Capture Dissociation in Fourier Transform Mass Spectrometry. Anal. Chem. 2001, 73, 2998–3005.CrossRefGoogle Scholar
  24. 24.
    Shi, S. D.-H.; Hemling, M. E.; Carr, S. A.; Horn, D. M.; Lindh, I.; McLafferty, F. W. Phosphopeptide/Phosphoprotein Mapping by Electron Capture Dissociation Mass Spectrometry. Anal. Chem. 2001, 73, 19–22.CrossRefGoogle Scholar
  25. 25.
    Stenballe, A.; Jensen, O. N.; Olsen, J. V.; Haselmann, K. F.; Zubarev, R. A. Electron Capture Dissociation of Singly and Multiply Phosphorylated Peptides. Rapid Commun. Mass Spectrom. 2000, 14, 1793–1800.CrossRefGoogle Scholar
  26. 26.
    Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a Growth-Hormone-Releasing Acylated Peptide from Stomach. Nature 1999, 402, 656–660.CrossRefGoogle Scholar
  27. 27.
    Tschop, M.; Smiley, D. L.; Heiman, M. L. Ghrelin Induces Adiposity in Rodents. Nature 2000, 407, 908–913.CrossRefGoogle Scholar
  28. 28.
    Towler, D. A.; Gordon, J. I.; Adams, S. P.; Glasser, L. The Biology and Enzymology of Eukaryotic Protein Acylation. Ann. Rev. Biochem. 1988, 57, 69–99.CrossRefGoogle Scholar
  29. 29.
    Olson, E. N. Modification of Proteins with Covalent Lipids. Prog. Lipid Res. 1988, 27, 177–197.CrossRefGoogle Scholar
  30. 30.
    Wilm, M. S.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68, 1–8.CrossRefGoogle Scholar
  31. 31.
    Winger, B. E.; Campana, J. E. Characterization of Combinatorial Peptide Libraries by Electrospray Ionization Fourier Transform Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1811–1813.CrossRefGoogle Scholar
  32. 32.
    Marshall, A. G.; Wang, T. C. L.; Ricca, T. L. Tailored Excitation for Fourier Transform Ion Cyclotron Mass Spectrometry. J. Am. Chem. Soc. 1985, 107, 7893–7897.CrossRefGoogle Scholar
  33. 33.
    Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Sustained Off-Resonance Irradiation for Collision-Activated Dissociation Involving Fourier Transform Mass Spectrometry. Collision-Activated Dissociation Technique that Emulates Infrared Multiphoton Dissociation. Anal. Chim. Acta 1991, 246, 199–210.CrossRefGoogle Scholar
  34. 34.
    Havlícek, V.; Higgins, L.; Chen, W.; Halada, P.; Sebo, P.; Sakamoto, H.; Hackett, M. Mass Spectrometric Analysis of Recombinant Adenylate Cyclase Toxin from Bordetella pertussis strain 18323/pHSP9. J. Mass Spectrom. 2001, 36, 384–391.CrossRefGoogle Scholar
  35. 35.
    Hackett, M.; Guo, L.; Shabanowitz, J.; Hunt, D. F.; Hewlett, E. L. Internal Lysine Palmitoylation in Adenylate Cyclase Toxin from. Bordetella pertussis. Science 1994, 266, 433–435.Google Scholar
  36. 36.
    Yalcin, T.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. Why are B Ions Stable Species in Peptide Spectra? J. Am. Soc. Mass Spectrom. 1995, 6, 1165–1174.CrossRefGoogle Scholar
  37. 37.
    Aaserud, D. J.; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Distinguishing N- and C-Terminus Ions for Mass Spectrometry Sequencing of Proteins without Prior Degradation. Rapid Commun. Mass Spectrom. 1995, 9, 871–876.CrossRefGoogle Scholar
  38. 38.
    Evans, J.; Nicol, G.; Munson, B. Proton Affinities of Saturated Aliphatic Methyl Esters. J. Am. Soc. Mass Spectrom. 2000, 11, 789–796.CrossRefGoogle Scholar
  39. 39.
    Green, M. K.; Lebrilla, C. B. Ion-Molecule Reactions as Probes of Gas-Phase Structures of Peptides and Proteins. Mass Spectrom. Rev. 1997, 16, 53–71.CrossRefGoogle Scholar
  40. 40.
    Schnier, P. D.; Gross, D.; Williams, E. R. Electrostatic Forces and Dielectric Polarizability of Multiply Protonated Gas-Phase Cytochrome c Ions Probed by Ion/Molecule Chemistry. J. Am. Chem. Soc. 1995, 117, 6747–6757.CrossRefGoogle Scholar
  41. 41.
    McLafferty, F. W.; Turecek, F. J. Interpretation of Mass Spectra; 4th ed. University Science Books: Mill Valley, 1993, 57–59.Google Scholar
  42. 42.
    Levsen, K. Fundamental Aspects of Organic Mass Spectrometry. Verlag Chemie: Weinheim and New York, 1978, 160–161.Google Scholar
  43. 43.
    Cooper, H. J.; Hudgins, R. R.; Håkansson, K.; Marshall, A. G. Characterization of Amino Acid Side Chain Losses in Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2002, 13, 241–249.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2002

Authors and Affiliations

  1. 1.Molecular Profiling ProteomicsMerck Research LaboratoriesRahwayUSA

Personalised recommendations