Alkali chloride cluster ion dissociation examined by the kinetic method: Heterolytic bond dissociation energies, effective temperatures, and entropic effects

  • Lianming Wu
  • Jeff W. Denault
  • R. Graham Cooks
  • Lázló Drahos
  • Károly Vékey


Branching ratios have been measured as a function of collision energy for the dissociation of mass-selected chloride-bound salt cluster ions, [Rb-35Cl-Mi]+, where Mi = Na, K, Cs. The extended version of the kinetic method was used to determine the heterolytic bond dissociation energy (HBDE) of Rb-Cl. The measured value of 480.8 ± 8.5 kJ/mol, obtained under single collision conditions, agrees with the HBDE value (482.0 ± 8.0 kJ/mol), calculated from a thermochemical cycle. The observed effective temperature of the collisionally activated salt clusters increases with laboratory-frame collision energy under both single- and multiple-collision conditions. Remarkably, the effective temperatures under multiple collision conditions are lower than those recorded under single-collision conditions at the same collision energy, a consequence of the inability of the triatomic ions to store significant amounts of internal energy. Laboratory-frame kinetic energy to internal energy transfer (T→V) efficiencies range from 3.8 to 13.5%. For a given cluster ion, the T→V efficiency decreases with increasing collision energy. Many features of the experimental results are accounted for using MassKinetics modeling (Drahos and Vékey, J. Mass Spectrom. 2001, 36, 237).


  1. 1.
    Franklin, J. L. Benchmark Papers in Physical Chemistry and Chemical Physics, No. 3: Ion-Molecule Reactions, Part. 1: Kinetics and Dynamics. Hutchinson and Ross, Inc.: Stroudsburg, 1979.Google Scholar
  2. 2.
    Lias, S. G.; Ausloos, P. J. Am. Chem. Soc. 1977, 99, 4831–4833.CrossRefGoogle Scholar
  3. 3.
    Gal, J.-F.; Maria, P.-C.; Raczynska, E. D. J. Mass Spectrom. 2001, 36, 699–716.CrossRefGoogle Scholar
  4. 4.
    Alcamí, M.; Mó, O.; Yáñez, M. Mass Spectrom. Rev. 2001, 20, 195–245.CrossRefGoogle Scholar
  5. 5.
    Cooks, R. G.; Kruger, T. L. J. Am. Chem. Soc. 1977, 99, 1279–1281.CrossRefGoogle Scholar
  6. 6.
    Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Mass Spectrom. Rev. 1994, 13, 287–339.CrossRefGoogle Scholar
  7. 7.
    Cooks, R. G.; Wong, P. S. H. Acc. Chem. Res. 1998, 31, 379–386.CrossRefGoogle Scholar
  8. 8.
    Drahos, L.; Vékey, K. J. Mass Spectrom. 1999, 34, 79–84.CrossRefGoogle Scholar
  9. 9.
    Craig, S. L.; Zhong, M.; Choo, B.; Brauman, J. I. J. Phys. Chem. A. 1997, 101, 5379.CrossRefGoogle Scholar
  10. 10.
    Campbell, S.; Marzluff, E. M.; Rodgers, M. T.; Beauchamp, J. L.; Rempe, M. E.; Schwinck, K. F.; Lichtenberger, D. L. J. Am. Chem. Soc. 1994, 116, 5257–5264.CrossRefGoogle Scholar
  11. 11.
    Ervin, K. M. Int. J. Mass Spectrom. 2000, 195/196, 271–284.CrossRefGoogle Scholar
  12. 12.
    Laskin, J.; Futrell, J. H. J. Phys. Chem. A 2000, 104, 8829–8837.CrossRefGoogle Scholar
  13. 13.
    Cooks, R. G.; Koskinen, J. T.; Thomas, P. D. J. Mass Spectrom. 1999, 34, 85–92.CrossRefGoogle Scholar
  14. 14.
    Armentrout, P. B. J. Mass Spectrom. 1999, 34, 74–78.CrossRefGoogle Scholar
  15. 15.
    Cheng, X. H.; Wu, Z. C.; Fenselau, C. J. Am. Chem. Soc. 1993, 115, 4844–4848.CrossRefGoogle Scholar
  16. 16.
    Cerda, B. A.; Hoyau, S.; Ohanessian, G.; Wesdemiotis, C. J. Am. Chem. Soc. 1998, 120, 2437–2448.CrossRefGoogle Scholar
  17. 17.
    Cerda, B. A.; Wesdemiotis, C. J. Am. Chem. Soc. 1996, 118, 11884–11892.CrossRefGoogle Scholar
  18. 18.
    Lardin, H. A.; Squires, R. R.; Wenthold, P. G. J. Mass Spectrom. 2001, 36, 607–615.CrossRefGoogle Scholar
  19. 19.
    Wenthold, P. G. J. Am. Soc. Mass Spectrom. 2000, 11, 601–605.CrossRefGoogle Scholar
  20. 20.
    Kuntz, A. F.; Boynton, A. W.; David, G. A.; Colyer, K. E.; Poutsma, J. C. J. Am. Soc. Mass Spectrom. 2002, 13, 72–81.CrossRefGoogle Scholar
  21. 21.
    Pommerening, C. A.; Bachrach, S. M.; Sunderlin, L. S. J. Am. Soc. Mass Spectrom. 1999, 10, 856–861.CrossRefGoogle Scholar
  22. 22.
    Ervin, K. M. J. Am. Soc. Mass Spectrom. 2002, 13, 435–452. 23.|Zheng, X.; Cooks, R. G. J. Phys. Chem. A, unpublished.CrossRefGoogle Scholar
  23. 24.
    Chen, G.; Cooks, R. G. J. Mass Spectrom. 1997, 32, 1258–1261.CrossRefGoogle Scholar
  24. 25.
    Wang, G.; Cole, R. B. J. Electron Spectrosc. Relat. Phenom. 2000, 108, 153–162.CrossRefGoogle Scholar
  25. 26.
    Holmes, J. L. Org. Mass Spectrom. 1985, 20, 169–183.CrossRefGoogle Scholar
  26. 27.
    Cooks, R. G.; Rockwood, A. L. Rapid Commun. Mass Spectrom. 1991, 5, 93.Google Scholar
  27. 28.
    Drahos, L.; Vékey, K. J. Mass Spectrom. 2001, 36, 237–263.CrossRefGoogle Scholar
  28. 29.
    Steinfeld, J.; Francisco, J.; Hase, W. Chemical Kinetics and Dynamics. Prentice-Hall: New Jersey, 1989, 308–393.Google Scholar
  29. 30.
    Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics. Oxford University Press: New York, 1996, 171–282.Google Scholar
  30. 31.
    Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions. John Wiley and Sons Ltd.: Bristol, 1972, 64–184.Google Scholar
  31. 32.
    Oppenheim, I.; Shuler, K. E.; Weiss, G. H. Stochastic Processes in Chemical Physic: The Master Equation. M.I.T. Press: Cambridge, 1977.Google Scholar
  32. 33.
    Thomas, P. D.; Cooks, R. G.; Vékey, K.; Drahos, L. J. Phys. Chem. A 2000, 104, 1359–1361.CrossRefGoogle Scholar
  33. 34.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q. Gaussian 98 (Revision A). Gaussian Inc.: Pittsburgh, 1998.Google Scholar
  34. 35.
    Balasubramanian, K. Relativistic Effects in Chemistry, Part A, B. Wiley: New York, 1997.Google Scholar
  35. 36.
    Becke, A. D. Phys. Rev. A: Gen. Phys. 1988, 38, 3098–3100.CrossRefGoogle Scholar
  36. 37.
    Becke, A. D. J. Chem. Phys. 1992, 97, 9173–9177.CrossRefGoogle Scholar
  37. 38.
    Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter 1988, 37, 785–789.CrossRefGoogle Scholar
  38. 39.
    Dunning, J. T. H.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer, H. F., Ed., Plenum: New York, 1976.Google Scholar
  39. 40.
    Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093–3100.CrossRefGoogle Scholar
  40. 41.
    Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502–16513.CrossRefGoogle Scholar
  41. 42.
    Miller, W. H. J. Phys. Chem. 1983, 87, 21–22.CrossRefGoogle Scholar
  42. 43.
    Pechukas, P. Ann. Rev. Phys. Chem. 1981, 32, 159–177.CrossRefGoogle Scholar
  43. 44.
    Beyer, T.; Swinehart, D. R. ACM Commun. 1973, 16, 379–380.CrossRefGoogle Scholar
  44. 45.
    Wigner, E. J. Chem. Phys. 1937, 5, 720–725.CrossRefGoogle Scholar
  45. 46.
    Cooks, R. G. Collision Spectroscopy. Plenum Press: New York, 1978.Google Scholar
  46. 47.
    Wolfgang, R. P.; Li, H.; Cooks, R. G. Int. J. Mass Spectrom., unpublished.Google Scholar
  47. 48.
    Chen, G.; Cooks, R. G.; Bunk, D. M.; Welch, M. J.; Christie, J. R. Int. J. Mass Spectrom. 1999, 185/186/187, 75–90.Google Scholar
  48. 49.
    Kenttamaa, H. I.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1985, 52, 165–174.Google Scholar
  49. 50.
    Vékey, K.; Brenton, A. G.; Beynon, J. H. Int. J. Mass Spectrom. Ion Processes 1986, 70, 277–300.CrossRefGoogle Scholar
  50. 51.
    Lee, S. H.; Kim, M. S.; Beynon, J. H. Int. J. Mass Spectrom. Ion Processes 1987, 75, 83–89.CrossRefGoogle Scholar
  51. 52.
    McLuckey, S. A.; Cooks, R. G.; Fulford, J. E. Int. J. Mass Spectrom. 1983, 52, 165–174.CrossRefGoogle Scholar
  52. 53.
    Marzluff, E. M.; Campbell, S.; Rodgers, M. T.; Beauchamp, J. L. J. Am. Chem. Soc. 1994, 116, 6947–6948.CrossRefGoogle Scholar
  53. 54.
    Augusti, R.; Zheng, X.; Noll, R. J.; Cooks, R. G. J. Phys. Chem. A, to be published.Google Scholar
  54. 55.
    Lide, D. R. CRC Handbook of Chemistry and Physics; 75th ed. CRC ress: Ann Arbor, 1995.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2002

Authors and Affiliations

  • Lianming Wu
    • 1
  • Jeff W. Denault
    • 1
  • R. Graham Cooks
    • 1
  • Lázló Drahos
    • 2
  • Károly Vékey
    • 2
  1. 1.Chemistry DepartmentPurdue UniversityWest LafayetteUSA
  2. 2.Institute of ChemistryHungarian Academy of SciencesBudapestHungary

Personalised recommendations