Thermal dissociation of the protein homodimer ecotin in the gas phase

  • Natalia Felitsyn
  • Elena N. Kitova
  • John S. Klassen


The influence of charge on the thermal dissociation of gaseous, protonated, homodimeric, protein ecotin ions produced by nanoflow electrospray ionization (nanoES) was investigated using the blackbody infrared radiative dissociation technique. Dissociation of the protonated dimer, (E2 + nH)n+≡ E 2 n+ where n = 14–17, into pairs of monomer ions is the dominant reaction at temperatures from 126 to 175 °C. The monomer pair corresponding to the most symmetric charge distribution is preferred, although 50–60% of the monomer product ions correspond to an asymmetric partitioning of charge. The relative abundance of the different monomer ion pairs produced from E 2 14+ , E 2 15+ , and E 2 16+ depends on reaction time, with the more symmetric charge distribution pair dominating at longer times. The relative yield of monomer ions observed late in the reaction is independent of temperature indicating that proton transfer between the monomers does not occur during dissociation and that the different monomer ion pairs are formed from dimer ions which differ in the distribution of charge between the monomers. For E 2 17+ , the yield of monomer ions is independent of reaction time but does exhibit slight temperature dependence, with higher temperatures favoring the monomers corresponding to most symmetric charge distribution. The charge distribution in the E 2 15+ and E 2 16+ dimer ions influences the dissociation kinetics, with the more asymmetric distribution resulting in greater reactivity. In contrast, the charge distribution has no measurable effect on the dissociation kinetics and energetics of the E 2 17+ dimer.


Charge State Proton Transfer Thermal Dissociation High Charge State Arrhenius Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Goodsell, D. S.; Olson, A. J. Annu. Rev. Biophys. Struct. 2000, 29, 105–153.CrossRefGoogle Scholar
  2. 2.
    Jones, S.; Thornton, J. M. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 13–20.CrossRefGoogle Scholar
  3. 3.
    Loo, J. A. Int. J. Mass Spectrom. 2000, 200, 175–186.CrossRefGoogle Scholar
  4. 4.
    Versluis, C.; van der Staaij, A.; Stokvis, E.; Heck, A. J. R. J. Am. Soc. Mass. Spectrom. 2001, 12, 329–336.CrossRefGoogle Scholar
  5. 5.
    Mauk, M. R.; Mauk, A. G.; Chen, Y.-L.; Douglas, D. J. J. Am. Soc. Mass. Spectrom. 2002, 13, 59–71.CrossRefGoogle Scholar
  6. 6.
    Light-Wahl, K. J.; Schwartz, B. L.; Smith, R. D. J. Am. Chem. Soc. 1994, 116, 5271–527.CrossRefGoogle Scholar
  7. 7.
    Felitsyn, N.; Kitova, E. N.; Klassen, J. S. Anal. Chem. 2001, 73, 4647–4661.CrossRefGoogle Scholar
  8. 8.
    Zhang, Z.; Krutchinsky, A.; Endicott, S.; Realini, C.; Rechsteiner, M.; Standing, K. G. Biochemistry 1999, 38, 5651–5658.CrossRefGoogle Scholar
  9. 9. (a)
    Dunbar, R. C.; McMahon, T. B. Science 1998, 279, 194–197.CrossRefGoogle Scholar
  10. 9. (b)
    Price, W. D.; Williams, E. R. J. Phys. Chem. 1997, 101, 8844–8852.Google Scholar
  11. 10.
    Chung, C. H.; Ives, H. E.; Almeda, S.; Goldberg, A. L. J. Biol. Chem. 1983, 258, 11032–11038.Google Scholar
  12. 11.
    Shin, D. H.; Song, H. K.; Seong, I. S.; Lee, C. S.; Chung, C. H.; Suh, S. W. Protein Sci. 1996, 5, 2236–2247.CrossRefGoogle Scholar
  13. 12.
    Seymour, J. L.; Linquist, R. N.; Dennis, M. S.; Moffat, B.; Yansura, D.; Reilly, D.; Wessinger, M. E.; Lazarus, R. A. Biochemistry 1994, 33, 3949–3958.CrossRefGoogle Scholar
  14. 13. (a)
    McGrath, M. E.; Erpel, T.; Bystroff, C.; Fletterick, R. J. EMBO J 1994, 13, 1502–1507.Google Scholar
  15. 13. (b)
    Pal, G.; Szilágyi, L.; Gráf, L. FEBS Lett 1996, 385, 165–170.CrossRefGoogle Scholar
  16. 14.
    Jarrold, M. F. Annu. Rev. Phys. Chem. 2000, 51, 179–207.CrossRefGoogle Scholar
  17. 15. (a)
    Jockusch, R. A.; Schnier, P. D.; Price, W. D.; Strittmatter, E. F.; Demirev, P. A.; Williams, E. R. Anal. Chem. 1997, 69, 1119–1126.CrossRefGoogle Scholar
  18. 15. (b)
    Huang, Y. L.; Pasatolic, L.; Guan, S. H.; Marshall, A. G. Anal. Chem. 1994, 66, 4385–4389.CrossRefGoogle Scholar
  19. 16.
    Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. J. Chem. Phys. 1968, 49, 2240.CrossRefGoogle Scholar
  20. 17.
    de la Mora, J. F. Anal. Chim. Acta 2000, 406, 93–104.CrossRefGoogle Scholar
  21. 18.
    Nagradova, N. K. FEBS Lett. 2001, 487, 327–332.CrossRefGoogle Scholar
  22. 19.
    Kitova, E. N.; Bundle, D. R.; Klassen, J. S. J. Am. Chem. Soc. 2002, 124, 5902–5913.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2002

Authors and Affiliations

  • Natalia Felitsyn
    • 1
    • 2
  • Elena N. Kitova
    • 1
  • John S. Klassen
    • 1
  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada
  2. 2.College of MedicineUniversity of FloridaGainesville

Personalised recommendations