Determination of linkages of linear and branched oligosaccharides using closed-ring chromophore labeling and negative ion trap mass spectrometry

Article

Abstract

Linear as well as branched oligosaccharides were labeled with p-aminobenzoic ethyl ester (ABEE) using the glycosylamine closed-ring labeling approach and analyzed by negative-ion electrospray ionization mass spectrometry (ESI-MS). Linkage specific fragment ions of ABEE labeled linear oligosaccharides were proposed based on the MS2 and MS3 data for several ABEE labeled linear oligosaccharides with known linkage configurations. Fragmentation at the reducing end was similar to that observed for ABEE disaccharides whereas the fragmentation pattern not involving the reducing end was similar to underivatized disaccharides. Based on these ions, all the linkages of linear oligosaccharides could be unambiguously determined. The fragmentation pattern at the branched sugar was in general not quite the same as the linear one. However, many linkage specific fragment ions were also observed for linkages at the branched sugar. These ions along with the ions proposed for linear oligosaccharides were found to be quite useful for the determination of all the linkages of branched oligosaccharides.

References

  1. 1.
    Li, H.; Sharon, N. Protein Glycosylation: Structural and Functional Aspects. Eur. J. Biochem. 1993, 218(1), 1–27.CrossRefGoogle Scholar
  2. 2.
    Varki, A. Biological Roles of Oligosaccharides: All of the Theories are Correct. Glycobiol. 1993, 3(2), 97–130.CrossRefGoogle Scholar
  3. 3.
    Staudacher, E.; Altmann, F.; Wilson, I. B. H.; Marz, L. Fucose in N-Glycans: From Plant to Man. Biochim. Biophys. Acta. 1999, 1473(1), 216–236.Google Scholar
  4. 4.
    Linsley, K. B.; Chan, S. Y.; Chan, S.; Reinhold, B. B.; Lisi, P. J.; Reinhold, V. N. Applications of Electrospray Mass Spectrometry to Erythropoietin N- and O-Linked Glycans. Anal. Biochem. 1994, 219(2), 207–217.CrossRefGoogle Scholar
  5. 5.
    Sasaki, H.; Bothner, B.; Dell, A.; Fukuda, M. Carbohydrate Structure of Erythropoietin Expressed in Chinese Hamster Ovary Cells by a Human Erythropoietin cDNA. J. Biol. Chem. 1987, 262(25), 12059–12076.Google Scholar
  6. 6.
    Chaplin, M. F.; Kennedy, J. F. Carbohydrate Analysis. Oxford University, Inc: New York, 1994; pp 221–289.Google Scholar
  7. 7.
    Harvey, D. J.; Küster, B.; Naven, T. J. P. Perspectives in the Glycosciences-Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry of Carbohydrates. Glycoconjugate J. 1998, 15(4), 333–338.CrossRefGoogle Scholar
  8. 8.
    Tseng, K.; Hedrick, J. L.; Lebrilla, C. B. Catalog-Library Approach for the Rapid and Sensitive Structural Elucidation of Oligosaccharides. Anal. Chem. 1999, 71, 3747–3754.CrossRefGoogle Scholar
  9. 9.
    Sible, E. M.; Brimmer, S. P.; Leary, J. A. Interaction of First Row Transition Metals with a 1–3, a 1–6 Mannotriose, and Conserved Trimannosyl Core Oligosaccharides: A Comparative Electrospray Ionization Study of Doubly and Singly Charged Complexes. J. Am. Chem. Soc. Mass Spectrom. 1997, 8(1), 32–42.CrossRefGoogle Scholar
  10. 10.
    König, S.; Leary, J. A. Evidence for Linkage Position Determination in Cobalt Coordinated Pentasaccharides Using Ion Trap Mass Spectrometry. J. Am. Chem. Soc. Mass Spectrom. 1998, 9, 1125–1134.CrossRefGoogle Scholar
  11. 11.
    Reinhold, V. N.; Reinhold, B. B.; Costello, C. E. Carbohydrate Molecular Weight Profiling, Sequence, Linkage, and Branching Data: ES-MS and CID. Anal. Chem. 1995, 67(11), 1772–1784.CrossRefGoogle Scholar
  12. 12.
    Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Characterization of Oligosaccharide Composition and Structure by Quadrupole Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1493–1504.CrossRefGoogle Scholar
  13. 13.
    Viseux, N.; de Hoffmann, E.; Domon, B. Structural Assignment of Permethylated Oligosaccharide Subunits Using Sequential Tandem Mass Spectrometry. Anal. Chem. 1998, 70, 4951–4959.CrossRefGoogle Scholar
  14. 14.
    Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Electrospray Ionization-Ion Trap Mass Spectrometry for Structural Analysis of Complex N-Linked Glycoprotein Oligosaccharides. Anal. Chem. 1998, 70, 4441–4447.CrossRefGoogle Scholar
  15. 15.
    Ahn, Y. H.; Yoo, J. S. Malononitrile as a New Derivatizing Reagent for High-Sensitivity Analysis of Oigosaccharides by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 2011–2015.CrossRefGoogle Scholar
  16. 16.
    Charlwood, J.; Langridge, J.; Tolson, D.; Birrell, H.; Camilleri, P. Profiling of 2-Aminoacridone Derivatized Glycans by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 107–112.CrossRefGoogle Scholar
  17. 17.
    Saba, J. A.; Shen, X.; Jamieson, J. C.; Perreault, H. Effect of 1-Phenyl-3-methyl-5-pyrazolone Labeling on the Fragmentation Behavior of Asialo and Sialated N-Linked Glycans under Electrospray Ionization Conditions. Rapid Commun. Mass Spectrom. 1999, 13, 704–711.CrossRefGoogle Scholar
  18. 18.
    Shen, X.; Perreault, H. Electrospray Ionization Mass Spectrometry of 1-Phenyl-3-methyl-5-pyrazolone Derivatives of Neutral and N-Acetylated Oligosaccharides. J. Mass Spectrom. 1999, 34, 502–510.CrossRefGoogle Scholar
  19. 19.
    Harvey, D. J. Electrospray Mass Spectrometry and Fragmentation of N-Linked Carbohydrates Derivatized at the Reducing Terminus. J. Am. Soc. Mass Spectrom. 2000, 11, 900–915.CrossRefGoogle Scholar
  20. 20.
    Her, G. R.; Santikarn, S.; Reinhold, V. N.; Williams, J. C. Simplified Approach to HPLC Precolumn Fluorescent Labeling of Carbohydrates: N-(2-pyridinyl)glycosylamines. J. Carbohydr. Chem. 1987, 6(1), 129–139.CrossRefGoogle Scholar
  21. 21.
    Li, D. T.; Her, G. R. Linkage Analysis of Chromophore-Labeled Disaccharides and Linear Oligosaccharides by Negative Ion Fast Atom Bombardment Ionization and Collisional-Induced Dissociation with B/E Scanning. Anal. Biochem. 1993, 211(2), 250–257.CrossRefGoogle Scholar
  22. 22.
    Li, D. T.; Her, G. R. Structural Analysis of Chromophore-Labeled Disaccharides and Oligosaccharides by Electrospray Ionization Mass Spectrometry and High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 1998, 33, 644–652.CrossRefGoogle Scholar
  23. 23.
    Li, D. T.; Sheen, J. F.; Her, G. R. Structural Analysis of Chromophore-Labeled Disaccharides by Capillary Electrophoresis Tandem Mass Spectrometry Using Ion Trap Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 292–300.CrossRefGoogle Scholar
  24. 24.
    Garozzo, D.; Impallomeni, G.; Spina, E.; Green, B. N.; Hutton, T. Linkage Analysis in Disaccharides by Electrospray Mass Spectrometry. Carbohydr. Res. 1991, 221, 253–257.CrossRefGoogle Scholar
  25. 25.
    Mulroney, B.; Traeger, J. C.; Stone, B. A. Determination of Both Linkage Position and Anomeric Configuration in Underivatized Glucopyranosyl Disaccharides by Electrospray Mass Spectrometry. J. Mass Spectrom. 1995, 30, 1277–1283.CrossRefGoogle Scholar
  26. 26.
    Gu, J.; Hiraga, T.; Wada, Y. Electrospray Ionization Mass Spectrometry of Pyridylaminated Oligosaccharide Derivatives: Sensitivity and In-Source Fragmentation. Biol. Mass Spectrom. 1994, 23(4), 212–217.CrossRefGoogle Scholar
  27. 27.
    Okamoto, M.; Takahashi, K.; Doi, T. Sensitive Detection and Structural Characterization of Trimethyl(p-aminophenyl)-ammonium-derivatized Oligosaccharides by Electrospray Ionization-Mass Spectrometry and Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 641–643.CrossRefGoogle Scholar
  28. 28.
    Wang, W. T.; LeDonne, N. C., Jr.; Ackerman, B.; Sweeley, C. C. Structural Characterization of Oligosaccharides by High-Performance Liquid Chromatography, Fast-Atom Bombardment-Mass Spectrometry, and Exoglycosidase Digestion. Anal. Biochem. 1984, 141(2), 366–381.CrossRefGoogle Scholar
  29. 29.
    Suzuki, S.; Kakhi, K.; Honda, S. Comparison of the Sensitivities of Various Derivatives of Oligosaccharides in LC/MS with Fast Atom Bombardment and Electrospray Ionization Interfaces. Anal. Chem. 1996, 68, 2073–2083.CrossRefGoogle Scholar
  30. 30.
    Kubelka, V.; Altmann, F.; Staudacher, E.; Tretter, V.; März, L.; Hård, K.; Kamerling, J. P.; Vliegenthart, J. F. G. Primary Structures of the N-linked Carbohydrate Chains from Honeybee Venom Phospholipase A2. Eur. J. Biochem. 1993, 213, 1193–1204.CrossRefGoogle Scholar
  31. 31.
    Lai, C. C.; Her, G. R. Analysis of N-Glycosylation of Phospholipase A2 from Venom of Individual Bees by Microbore High Performance Liquid Chromatography /Electrospray Mass Spectrometry Using an Ion Trap Mass Spectrometer. J. Chromatogr. B 2002, 766(2), 243–250.CrossRefGoogle Scholar
  32. 32.
    Packer, N. H.; Lawson, M. A.; Jardine, D. R.; Redmond, J. W. A General Approach to desalting Oligosaccharides released from Glycoproteins. Glycoconj. J. 1998, 15, 737–747.CrossRefGoogle Scholar
  33. 33.
    Domon, B.; Costello, C. E. A Systematic Nomenclature for Carbohydrate Fragmentations in FAB-MS/MS Spectra of Glycoconjugates. Glycoconj. J. 1988, 5(4), 397–409.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2002

Authors and Affiliations

  1. 1.Department of ChemistryNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations