On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry

Article

Abstract

α-cyclodextrin complexes with linear α,ω-dicarboxylic acids were investigated by electrospray mass spectrometry. These hydrophobic complexes are known to have an equilibrium binding constant that increases with the diacid chain length. However, the electrospray mass spectrometry (ES-MS) spectra showed that the relative intensity of the complex did not vary significantly with chain length. This contradiction is caused by a contribution of nonspecific adducts to the signal of the complex in ES-MS. In order to estimate the contribution of nonspecific adducts to the total intensity of the complexes with α-cyclodextrin, the comparison was made between α-cyclodextrin and maltohexaose, the latter being incapable of making inclusion complexes in solution. The signal observed for complexes between diacids and maltohexaose can only result from nonspecific electrostatic aggregation, and is found to be more favorable with the shorter diacids. This is also supported by MS/MS experiments. A procedure is described which allows estimation of the contribution of the nonspecific complex in the spectra of the complexes with α-cyclodextrin by using the relative intensity of the complex with maltohexaose. The contribution of the specific complex to the total signal intensity is found to increase with the diacid chain length, which is in agreement with solution behavior.

References

  1. 1.
    Smith, R. D.; Light-Wahl, K. J. The Observation of Non-Covalent Interactions in Solution by Electrospray Ionization Mass Spectrometry: Promise, Pitfalls, and Prognosis. Biol. Mass Spectrom. 1993, 22, 493–501.CrossRefGoogle Scholar
  2. 2.
    Smith, D. L.; Zhang, Z. Probing Non-Covalent Structural Features of Proteins by Mass Spectrometry. Mass Spectrom. Rev 1994, 13, 411–429.CrossRefGoogle Scholar
  3. 3.
    Vincenti, M. Host-Guest Chemistry in the Mass Spectrometer. J. Mass Spectrom. 1995, 30, 925–939.CrossRefGoogle Scholar
  4. 4.
    Smith, R. D.; Bruce, J. E.; Wu, Q.; Lei, Q. P. New Mass Spectrometric Methods for the Study of Non-Covalent Associations of Biopolymers. Chem. Soc. Rev. 1997, 26, 191–202.CrossRefGoogle Scholar
  5. 5.
    Loo, J. A. Studying Non-Covalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  6. 6.
    Schalley, C. A. Supramolecular Chemistry Goes Gas Phase: the Mass Spectrometric Examination of Non-Covalent Interactions in Host-Guest Chemistry and Molecular Recognition. Int. J. Mass Spectrom. 2000, 194, 11–39.CrossRefGoogle Scholar
  7. 7.
    Rekharsky, M. V.; Inoue, Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998, 98, 1875–1917.CrossRefGoogle Scholar
  8. 8.
    Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1753.CrossRefGoogle Scholar
  9. 9.
    Connors, K. A. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev. 1997, 97, 1325–1357.CrossRefGoogle Scholar
  10. 10.
    Saenger, W. Cyclodextrin Inclusion Compounds in Research and Industry. Angew. Chem. Int. Ed. 1980, 19, 344–362.CrossRefGoogle Scholar
  11. 11.
    Selva, A.; Redenti, E.; Zanol, M.; Ventura, P.; Casetta, B. A Study of β-Cydodextrin and Its Inclusion Complexes with Piroxicam and Tefenadrine by Ionspray Mass Spectrometry. Org. Mass Spectrom. 1993, 28, 983–986.CrossRefGoogle Scholar
  12. 12.
    Camilleri, P.; Haskins, N. J.; New, A. P.; Saunders, M. R. Analyzing of the Complexation of Amino Acids and Peptides with β-Cyclodextrin Using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1993, 7, 949–952.CrossRefGoogle Scholar
  13. 13.
    Haskins, N. J.; Saunders, M. R.; Camilleri, P. The Complexation and Chiral Selectivity of 2-Hydroxypropyl-β-Cyclodextrin with Guest Molecules as Studied by Electrospray Mass Spectrometry. Rapid Commun. Mass Spectrom. 1994, 8, 423–426.CrossRefGoogle Scholar
  14. 14.
    Ramanathan, R.; Prokai, L. Electrospray Ionization Mass Spectrometric Study of Encapsulation of Amino Acids by Cyclodextrins. J. Am. Soc. Mass Spectrom. 1995, 6, 866–871.CrossRefGoogle Scholar
  15. 15.
    Cescutti, P.; Garozzo, D.; Rizzo, R. Study of the Inclusion Complexes of Aromatic Molecules with Cyclodextrins Using Ionspray Mass Spectrometry. Carbohyd. Res. 1996, 290, 105–115.CrossRefGoogle Scholar
  16. 16.
    Cescutti, P.; Garozzo, D.; Rizzo, R. Effect of Methylation of β-Cyclodextrin on the Formation of Inclusion Complexes with Aromatic Compounds. An Ionspray Mass Spectrometry Investigation. Carbohyd. Res. 1997, 302, 1–6.CrossRefGoogle Scholar
  17. 17.
    Lamcharfi, E.; Chuilon, S.; Kerbal, A.; Kunesch, G.; Libot, F.; Virelizier, H. Electrospray Ionization Mass Spectrometry in Supramolecular Chemistry: Characterization of Non-Covalent Cyclodextrin Complexes. J. Mass Spectrom. 1996, 31, 982–986.CrossRefGoogle Scholar
  18. 18.
    Cunniff, J. B.; Vouros, P. False Positives and the Detection of Cyclodextrin Inclusion Complexes by Electrospray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 437–447.CrossRefGoogle Scholar
  19. 19.
    Ramirez, J.; Ahn, S.; Grigorean, G.; Lebrilla, C. B. Evidence for the Formation of Gas-Phase Inclusion Complexes with Cyclodextrins and Amino Acids. J. Am. Chem. Soc. 2000, 122, 6884–6890.CrossRefGoogle Scholar
  20. 20.
    Ahn, S.; Ramirez, J.; Grigorean, G.; Lebrilla, C. B. Chiral Recognition in Gas-Phase Cyclodextrin: Amino Acid Complexes—Is the Three Point Interaction Still Valid in the Gas Phase? J. Am. Soc. Mass Spectrom. 2001, 12, 278–287.CrossRefGoogle Scholar
  21. 21.
    Lebrilla, C. B. The Gas-Phase Chemistry of Cyclodextrin Inclusion Complexes. Acc. Chem. Res. 2001, 34, 653–661.CrossRefGoogle Scholar
  22. 22.
    Gomez-Orellana, I.; Hallen, D.; Stödeman, M. Microcalorimetric Titration of α-Cyclodextrin with Some Straight-Chain α,ω-Dicarboxylates in Aqueous Solution at Different Temperature. J. Chem. Soc. Faraday Trans. 1994, 90, 3397–3400.CrossRefGoogle Scholar
  23. 23.
    Castronuovo, G.; Elia, V.; Velleca, F.; Viscardi, G. Thermodynamics of the Interaction of α-Cyclodextrin with α,ω-Dicarboxylic Acids in Aqueous Solutions. A Calorimetric Study at 25 °C. Thermochimica Acta 1997, 292, 31–37.CrossRefGoogle Scholar
  24. 24.
    Eliadou, K.; Yannakopoulou, K.; Rontoyianni, A.; Mavridis, I. M. NMR Detection of Simultaneous Formation of [2]- and [3]Pseudorotaxanes in Aqueous Solution Between a-Cyclodextrin and Linear Aliphatic α,ω-Amino Acids, an α,ω-Diamine and an α,ω-Diacid of Similar Length, and Comparison with the Solid State Structures. J. Org. Chem. 1999, 64, 6217–6226.CrossRefGoogle Scholar
  25. 25.
    Wilson, L. D.; Verrall, R. E. A Volumetric Study of Cyclodextrin-α-ω-Alkyl Dicarboxylate Anion Complexes in Aqueous Solutions. J. Phys. Chem. B 2000, 104, 1880–1886.CrossRefGoogle Scholar
  26. 26.
    Siu, K. W. M.; Gardner, G. J.; Berman, S. S. Multiply Charged Ions in Ionspray Mass Spectrometry. Org. Mass Spectrom. 1989, 24, 931–942.CrossRefGoogle Scholar
  27. 27.
    Aplin, R. T.; Moloney, M. G.; Newby, R.; Wright, E. Negative-Ion Electrospray Mass Spectrometric Analysis of Dicarboxylic Acids. J. Mass Spectrom. 1999, 34, 60–61.CrossRefGoogle Scholar
  28. 28.
    Bastos, M.; Briggner, L.-E.; Shehatta, I.; Wadsö, I. The Binding of Alkane-α,ω-Diols to α,-Cyclodextrin. A Microcalorimetric Study. J. Chem. Thermodynamics 1990, 22, 1181–1190.CrossRefGoogle Scholar
  29. 29.
    Castronuovo, G.; Elia, V.; Fessas, D.; Giordano, A.; Velleca, F. Thermodynamics of the Interaction of Cyclodextrins with Aromatic and α,ω-Amino Acids in Aqueous Solutions: a Calorimetric Study at 25 °C. Carbohydr. Res. 1995, 272, 31–39.CrossRefGoogle Scholar
  30. 30.
    Robinson, C. V.; Chung, E. W.; Kragelund, B. B.; Knudsen, J.; Aplin, R. T.; Poulsen, F. M.; Dobson, C. M. Probing the Nature of Noncovalent Interactions by Mass Spectrometry. A Study of Protein-CoA Ligand Binding and Assembly. J. Am. Chem. Soc. 1996, 118, 8646–8653.CrossRefGoogle Scholar
  31. 31.
    Komiyama, M.; Hirai, H.; Kobayashi, K. Complex-Forming Ability of Linear Glucose Oligomers As Non-Cyclic Analogs of Cyclodextrins. Makromol. Chem. Rapid Commun. 1986, 7, 739–742.CrossRefGoogle Scholar
  32. 32.
    Aoyama, Y.; Otsuki, J.; Nagai, Y.; Kobayashi, K.; Toi, H. Host-Guest Complexation of Oligosaccharides—Interaction of Maltodextrins with Hydrophobic Fluorescence Probes in Water. Tetrahedron Lett. 1992, 33, 3775–3778.Google Scholar
  33. 33.
    Kano, K.; Minami, K.; Horigushi, K.; Ishimura, T.; Kodera, M. Ability of Non-Cyclic Oligosaccharides to Form Molecular Complexes and Its Use for Chiral Separation by Capillary Zone Electrophoresis. J. Chromatogr. A 2002, 694, 307–313.CrossRefGoogle Scholar
  34. 34.
    Mele, A.; Selva, A. Detection of 1:1 Adducts of Piroxicam with β-Cyclodextrin or with Maltohexaose by Fast Atom Bombardment Mass Spectrometry. J. Mass Spectrom. 1995, 30, 645–647.CrossRefGoogle Scholar
  35. 35.
    Selva, A.; Redenti, E.; Zanol, M.; Ventura, P.; Casetta, B. Letter: Support for the Proposedobservation by Ionspray Mass Spectrometry of Piroxicam/β-Cyclodextrin and Tefenadrine/β-Cyclodextrin Non-Covalent Inclusion Complexes. Eur. Mass Spectrom. 1995, 1, 105–106.CrossRefGoogle Scholar
  36. 36.
    Bakhtiar, R.; Bulusu, S. Molecular Complexes of Cyclodextrins: Application of Ion-Spray Mass Spectrometry to the Study of Complexes with Selected Nitrosamines. Rapid Commun. Mass Spectrom. 1995, 9, 1391–1394.CrossRefGoogle Scholar
  37. 37.
    Gomez, A.; Tang, K. Charge and Fission of Droplets in Electrostatic Sprays. Phys. Fluids 1994, 6, 404–414.CrossRefGoogle Scholar
  38. 38.
    Kebarle, P. A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J. Mass Spectrom. 2000, 35, 804–817.CrossRefGoogle Scholar
  39. 39.
    Gabelica, V.; De Pauw, E. Comparison Between Solution-Phase Stability and Gas-Phase Kinetic Stability of Oligodeoxynucleotide Duplexes. J. Mass Spectrom. 2001, 36, 397–402.CrossRefGoogle Scholar
  40. 40.
    Li, Y.-T.; Hsieh, Y. L.; Henion, J. D.; Senko, M. W.; McLafferty, F. W.; Ganem, B. Mass Spectrometric Studies on Noncovalent Dimers of Leucine Zipper Peptides. J. Am. Chem. Soc. 1993, 115, 8409–8413.CrossRefGoogle Scholar
  41. 41.
    Ross, P. D.; Rekharsky, M. V. Thermodynamics of Hydrogen Bond and Hydrophobic Interactions in Cyclodextrin Complexes. Biophys. J. 1996, 71, 2144–2154.CrossRefGoogle Scholar
  42. 42.
    Pace, C. N. Evaluating Contribution of Hydrogen Bonding and Hydrophobic Binding to Protein Folding. Methods Enzymol. 1995, 259, 538–554.CrossRefGoogle Scholar
  43. 43.
    Lo Conte, L.; Chothia, C.; Janin, J. The Atomic Structure of Protein-Protein Recognition Sites. J. Mol. Biol. 1999, 285, 2177–2198.CrossRefGoogle Scholar
  44. 44.
    Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. The Maximal Affinity of Ligands. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9997–10002.CrossRefGoogle Scholar
  45. 45.
    Davis, A. M.; Teague, S. J. Hydrogen Bonding, Hydrophobic Interactions, and Failure of the Rigid Receptor Hypothesis. Angew. Chem. Int. Ed. Engl. 1999, 38, 736–749.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2002

Authors and Affiliations

  • Valérie Gabelica
    • 1
  • Nives Galic
    • 1
  • Edwin De Pauw
    • 1
  1. 1.Laboratoire de Spectrométrie de Masse, Départment de ChimieUniversité de LiègeLiègeBelgium
  2. 2.Laboratory of Analytical Chemistry, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations