Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry

  • Wengang Chai
  • Alexander M. Lawson
  • Vladimir Piskarev
Articles

Abstract

We previously reported that sequence and partial linkage information, including chain and blood-group types, of reducing oligosaccharides can be obtained from negative-ion electros-pray CID MS/MS on a quadrupole-orthogonal time-of-flight instrument with high sensitivity and without derivatization (Chai, W.; Piskarev, V.; Lawson, A. M. Anal. Chem. 2001, 73, 651–657). In contrast to oligonucleotides and peptides, oligosaccharides can form branched structures that result in a greater degree of structural complexity. In the present work we apply negative-ion electrospray CID MS/MS to core-branching pattern analysis using nine 3,6-branched and variously fucosylated oligosaccharides based on hexasaccharide backbones LNH/LNnH as examples. The important features of the method are the combined use of CID MS/MS of singly and doubly charged molecular ions of underivatized oligosaccharides to deduce the branching pattern and to assign the structural details of each of the 3- and 6-branches. These spectra give complimentary structural information. In the spectra of [M -H], fragment ions from the 6-linked branch are dominant and those from the 3-linked branch are absent, while fragment ions from both branches occur in the spectra of [M - 2H]2−. This allows the distinction of fragment ions derived from either the 3- or 6-branches. In addition, a unique D2β-3 ion, arising from double D-type cleavage at the 3-linked glycosidic bond of the branched Gal core residue, provides direct evidence of the branching pattern with sequence and partial linkage information being derived from C- and A-type fragmentations, respectively.

References

  1. 1.
    Gottschalk, A. The Influenza Virus Enzyme and Its Mucoprotein Substrate. Yale J. Biol. Med. 1954, 26, 352–364.Google Scholar
  2. 2.
    Watkins, W. M. Blood-Group Specific Substances. In Glycoproteins: Their composition, Structure and Function; Gottschalk, A., Ed.; Elsevier: Amsterdam, 1972; pp 830–899.Google Scholar
  3. 3.
    Kabat, E. A. Contributions of Quantitative Immunochemistry to Knowledge of Blood Group A, B, H, Le, I and i Antigens. Am. J. Clin. Pathol. 1982, 78, 281–292.Google Scholar
  4. 4.
    Feizi, T. Carbohydrate-Mediated Recognition Systems in Innate Immunity. Immunol. Rev. 2000, 173, 79–88.CrossRefGoogle Scholar
  5. 5.
    Feizi, T. Demonstration by Monoclonal Antibodies that Carbohydrate Structures of Glycoproteins and Glycolipids are Onco-Developmental Antigens. Nature 1985, 314, 53–57.CrossRefGoogle Scholar
  6. 6.
    DeFrees, S.; Kosch, W.; Way, W.; Paulson, J. C.; Sabesan, S.; Halcomb, R. L.; Huang, D. H.; Ichikawa, Y.; Wong, C. H. Ligand Recognition by E-Selectin—Synthesis, Inhibitory Activity, and Confirmational-Analysis of Bivalent Sialyl-Lewis-X Analogs. J. Am. Chem. Soc. 1995, 117, 66–79.CrossRefGoogle Scholar
  7. 7.
    Chai, W.; Feizi, T.; Yuen, C.-T.; Lawson, A. M. Nonreductive Release of O-Linked Oligosaccharides from Mucin Glycoproteins for Structural/Function Assignments as Neoglycolipids: Application in the Detection of Novel Ligands for E-Selectin. Glycobiol. 1997, 7, 861–872.CrossRefGoogle Scholar
  8. 8.
    Dell, A.; Morris, H. R. Glycoprotein Structure Determination by Mass Spectrometry. Science 2001, 291, 2351–2356.CrossRefGoogle Scholar
  9. 9.
    Duffin, K. L.; Welply, J. K.; Huang, E.; Henion, J. D. Characterization of N-Linked Oligosaccharides by Electrospray and Tandem Mass Spectrometry. Anal. Chem. 1992, 64, 1440–1448.CrossRefGoogle Scholar
  10. 10.
    Reinhold, V. N.; Reinhold, B. B.; Costello, C. E. Carbohydrate Molecular Weight Profiling, Sequence, Linkage, and Branching Data: ES-MS and CID. Anal. Chem. 1995, 67, 1772–1784.CrossRefGoogle Scholar
  11. 11.
    Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Characterization of Oligosaccharide Composition and Structure by Quadrupole Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1493–1504.CrossRefGoogle Scholar
  12. 12.
    Viseux, N.; de Hoffmann, E.; Domon, B. Structural Analysis of Permethylated Oligosaccharides by Electrospray Tandem Mass Spectrometry. Anal. Chem. 1997, 69, 3139–3198.CrossRefGoogle Scholar
  13. 13.
    Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Electrospray Ionization-Ion Trap Mass Spectrometry for Structural Analysis of Complex N-linked Glycoprotein Oligosaccharides. Anal. Chem. 1998, 70, 4441–4447.CrossRefGoogle Scholar
  14. 14.
    Yoshino, K.; Takao, T.; Murata, H.; Shimonshi, Y. Use of the Derivatizing Agent 4-Aminobenzoic Acid 2-(Diethylamino)-ethyl Ester for High-Sensitivity Detection of Oligosaccharides by Electrospray Ionization Mass Spectrometry. Anal. Chem. 1995, 67, 4028–4031.CrossRefGoogle Scholar
  15. 15.
    Ahn, Y. H.; Yoo, J. S. Malononitrile as a New Derivatizing Reagent for High-Sensitivity Analysis of Oligosaccharides by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 2011–2015.CrossRefGoogle Scholar
  16. 16.
    Li, D. T.; Her, G. R. Structural Analysis of Chromophore-Labeled Disaccharides and Oligosaccharides by Electrospray Ionization Mass Spectrometry and High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 1998, 33, 644–652.CrossRefGoogle Scholar
  17. 17.
    Charlwood, J.; Langridge, J.; Tolson, D.; Birrell, H.; Camilleri, P. Profiling of 2-Aminoacridone Derivatized Glycans by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 107–112.CrossRefGoogle Scholar
  18. 18.
    Saba, J. A.; Shen, X.; Jamieson, J. C.; Perreault, H. Effect of 1-Phenyl-3-Methyl-5-Pyrazolone Labeling on the Fragmentation Behavior of Asialo and Sialylated N-linked Glycans Under Electrospray Ionization Conditions. Rapid Commun. Mass Spectrom. 1999, 13, 704–711.CrossRefGoogle Scholar
  19. 19.
    Shen, X.; Perreault, H. Electrospray Ionization Mass Spectrometry of 1-Phenyl-3-Methyl-5-Pyrazolone Derivatives of Neutral and N-Acetylated Oligosaccharides. J. Mass Spectrom. 1999, 34, 502–510.CrossRefGoogle Scholar
  20. 20.
    Konig, S.; Leary, J. L. Evidence for Linkage Position Determination in Cobalt Coordination Pentasaccharides Using Ion Trap Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 1125–1134.CrossRefGoogle Scholar
  21. 21.
    Viseux, N.; de Hoffmann, E.; Domon, B. Structural Assignment of Permethylated Oligosaccharide Subunits Using Sequential Tandem Mass Spectrometry. Anal. Chem. 1998, 70, 4951–4959.CrossRefGoogle Scholar
  22. 22.
    Mock, K. K.; Davey, M.; Cottrell, J. S. The Analysis of Underivatized Oligosaccharides by Matrix-Assisted Laser Desorption Mass Spectrometry. Biochem. Biophys. Res. Commun. 1991, 177, 644–651.CrossRefGoogle Scholar
  23. 23.
    Harvey, D. J.; Küster, B.; Naven, T. J. P. Perspectives in the Glycosciences—Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry of Carbohydrates. Glycoconj. J. 1998, 15, 333–338.CrossRefGoogle Scholar
  24. 24.
    Tseng, K.; Hedrick, J. L.; Lebrilla, C. B. Catalog-Library Approach for the Rapid and Sensitive Structural Elucidation of Oligosaccahrides. Anal. Chem. 1999, 71, 3747–3754.CrossRefGoogle Scholar
  25. 25.
    Chai, W.; Piskarev, V.; Lawson, A. M. Negative-Ion Electrospray Mass Spectrometry of Neutral Underivatized Oligosaccharides. Anal. Chem. 2001, 73, 651–657.CrossRefGoogle Scholar
  26. 26.
    Bahr, U.; Pfenninger, A.; Karas, M.; Stahl, B. High-Sensitivity Analysis of Neutral Underivatized Oligosaccharides by Nanoelectrospray Mass Spectrometry. Anal. Chem. 1997, 69, 4530–4535.CrossRefGoogle Scholar
  27. 27.
    Lawson, A. M.; Chai, W.; Cashmore, G. C.; Stoll, M. S.; Hounsell, E. F.; Feizi, T. High-Sensitivity Structural Analysis of Oligosaccharide Probes (Neoglycolipids) by Liquid-Secondary-Ion Mass Spectrometry. Carbohydr. Res. 1990, 200, 47–57.CrossRefGoogle Scholar
  28. 28.
    Chai, W.; Luo, J.; Lim, C. K.; Lawson, A. M. Characterization of Heparin Oligosachcaride Mixtures as Ammonium Salts Using Electrospray Mass Spectrometry. Anal. Chem. 1998, 70, 2060–2066.CrossRefGoogle Scholar
  29. 29.
    Stoll, M. S.; Hounsell, E. F.; Lawson, A. M.; Chai, W.; Feizi, T. Microscale Sequencing of O-Linked Oligosaccharides Using Mild Periodate Oxidation of Alditols, Coupling to Phospholipid, and TLC-MS Analysis of the Resulting Neoglycolipids. Eur. J. Biochem. 1990, 189, 499–507.CrossRefGoogle Scholar
  30. 30.
    Chai, W.; Stoll, M. S.; Cashmore, G. C.; Lawson, A. M. Specificity of Mild Periodate Oxidation of Oligosaccharide-Alditols: Relevance to the Analysis of the Core-Branching Pattern of O-Linked Glycoprotein Oligosaccharides. Carbohydr. Res. 1993, 239, 107–115.CrossRefGoogle Scholar
  31. 31.
    Chai, W.; Yuen, C. T.; Feizi, T.; Lawson, A. M. Core-Branching Pattern and Sequence Analysis of Mannitol-Terminating Oligosaccharides by Neoglycolipid Technology. Anal. Biochem. 1999, 270, 314–322.CrossRefGoogle Scholar
  32. 32.
    Domon, B.; Costello, C. E. A Systematic Nomenclature for Carbohydrate Fragmentation in FAB-MS/MS Spectra of Glycoconjugates. Glycoconj. J. 1988, 5, 397–409.CrossRefGoogle Scholar
  33. 33.
    Thomsson, K. A.; Karlsson, H.; Hansson, G. C. Sequencing of Sulfated Oligosaccharides from Mucins by Liquid Chromatography and Electrospray Ionization Tandem Mass Spectrometry. Anal. Chem. 2000, 72, 4543–4549.CrossRefGoogle Scholar
  34. 34.
    Hardy, M. R.; Townsend, R. R. High-pH Anion Exchange Chromatography of Glycoprotin-Derived Carbohydrates. Methods Enzymol. 1994, 230, 208–225.CrossRefGoogle Scholar
  35. 35.
    Cheng, C.; Gross, M. L. Applications and Mechanisms of Charge-Remote Fragmentation. Mass Spectrom. Rev. 2000, 19, 398–420.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2002

Authors and Affiliations

  • Wengang Chai
    • 1
  • Alexander M. Lawson
    • 1
  • Vladimir Piskarev
    • 2
  1. 1.MRC Glycosciences LaboratoryImperial College School of Medicine, Northwick Park HospitalHarrowUK
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations