Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry

  • Wengang ChaiEmail author
  • Alexander M. Lawson
  • Vladimir Piskarev


We previously reported that sequence and partial linkage information, including chain and blood-group types, of reducing oligosaccharides can be obtained from negative-ion electros-pray CID MS/MS on a quadrupole-orthogonal time-of-flight instrument with high sensitivity and without derivatization (Chai, W.; Piskarev, V.; Lawson, A. M. Anal. Chem. 2001, 73, 651–657). In contrast to oligonucleotides and peptides, oligosaccharides can form branched structures that result in a greater degree of structural complexity. In the present work we apply negative-ion electrospray CID MS/MS to core-branching pattern analysis using nine 3,6-branched and variously fucosylated oligosaccharides based on hexasaccharide backbones LNH/LNnH as examples. The important features of the method are the combined use of CID MS/MS of singly and doubly charged molecular ions of underivatized oligosaccharides to deduce the branching pattern and to assign the structural details of each of the 3- and 6-branches. These spectra give complimentary structural information. In the spectra of [M -H], fragment ions from the 6-linked branch are dominant and those from the 3-linked branch are absent, while fragment ions from both branches occur in the spectra of [M - 2H]2−. This allows the distinction of fragment ions derived from either the 3- or 6-branches. In addition, a unique D2β-3 ion, arising from double D-type cleavage at the 3-linked glycosidic bond of the branched Gal core residue, provides direct evidence of the branching pattern with sequence and partial linkage information being derived from C- and A-type fragmentations, respectively.


Oligosaccharide GlcNAc Fucose Collision Induce Dissociation Collision Induce Dissociation Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gottschalk, A. The Influenza Virus Enzyme and Its Mucoprotein Substrate. Yale J. Biol. Med. 1954, 26, 352–364.Google Scholar
  2. 2.
    Watkins, W. M. Blood-Group Specific Substances. In Glycoproteins: Their composition, Structure and Function; Gottschalk, A., Ed.; Elsevier: Amsterdam, 1972; pp 830–899.Google Scholar
  3. 3.
    Kabat, E. A. Contributions of Quantitative Immunochemistry to Knowledge of Blood Group A, B, H, Le, I and i Antigens. Am. J. Clin. Pathol. 1982, 78, 281–292.Google Scholar
  4. 4.
    Feizi, T. Carbohydrate-Mediated Recognition Systems in Innate Immunity. Immunol. Rev. 2000, 173, 79–88.CrossRefGoogle Scholar
  5. 5.
    Feizi, T. Demonstration by Monoclonal Antibodies that Carbohydrate Structures of Glycoproteins and Glycolipids are Onco-Developmental Antigens. Nature 1985, 314, 53–57.CrossRefGoogle Scholar
  6. 6.
    DeFrees, S.; Kosch, W.; Way, W.; Paulson, J. C.; Sabesan, S.; Halcomb, R. L.; Huang, D. H.; Ichikawa, Y.; Wong, C. H. Ligand Recognition by E-Selectin—Synthesis, Inhibitory Activity, and Confirmational-Analysis of Bivalent Sialyl-Lewis-X Analogs. J. Am. Chem. Soc. 1995, 117, 66–79.CrossRefGoogle Scholar
  7. 7.
    Chai, W.; Feizi, T.; Yuen, C.-T.; Lawson, A. M. Nonreductive Release of O-Linked Oligosaccharides from Mucin Glycoproteins for Structural/Function Assignments as Neoglycolipids: Application in the Detection of Novel Ligands for E-Selectin. Glycobiol. 1997, 7, 861–872.CrossRefGoogle Scholar
  8. 8.
    Dell, A.; Morris, H. R. Glycoprotein Structure Determination by Mass Spectrometry. Science 2001, 291, 2351–2356.CrossRefGoogle Scholar
  9. 9.
    Duffin, K. L.; Welply, J. K.; Huang, E.; Henion, J. D. Characterization of N-Linked Oligosaccharides by Electrospray and Tandem Mass Spectrometry. Anal. Chem. 1992, 64, 1440–1448.CrossRefGoogle Scholar
  10. 10.
    Reinhold, V. N.; Reinhold, B. B.; Costello, C. E. Carbohydrate Molecular Weight Profiling, Sequence, Linkage, and Branching Data: ES-MS and CID. Anal. Chem. 1995, 67, 1772–1784.CrossRefGoogle Scholar
  11. 11.
    Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Characterization of Oligosaccharide Composition and Structure by Quadrupole Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1493–1504.CrossRefGoogle Scholar
  12. 12.
    Viseux, N.; de Hoffmann, E.; Domon, B. Structural Analysis of Permethylated Oligosaccharides by Electrospray Tandem Mass Spectrometry. Anal. Chem. 1997, 69, 3139–3198.CrossRefGoogle Scholar
  13. 13.
    Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Electrospray Ionization-Ion Trap Mass Spectrometry for Structural Analysis of Complex N-linked Glycoprotein Oligosaccharides. Anal. Chem. 1998, 70, 4441–4447.CrossRefGoogle Scholar
  14. 14.
    Yoshino, K.; Takao, T.; Murata, H.; Shimonshi, Y. Use of the Derivatizing Agent 4-Aminobenzoic Acid 2-(Diethylamino)-ethyl Ester for High-Sensitivity Detection of Oligosaccharides by Electrospray Ionization Mass Spectrometry. Anal. Chem. 1995, 67, 4028–4031.CrossRefGoogle Scholar
  15. 15.
    Ahn, Y. H.; Yoo, J. S. Malononitrile as a New Derivatizing Reagent for High-Sensitivity Analysis of Oligosaccharides by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 2011–2015.CrossRefGoogle Scholar
  16. 16.
    Li, D. T.; Her, G. R. Structural Analysis of Chromophore-Labeled Disaccharides and Oligosaccharides by Electrospray Ionization Mass Spectrometry and High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 1998, 33, 644–652.CrossRefGoogle Scholar
  17. 17.
    Charlwood, J.; Langridge, J.; Tolson, D.; Birrell, H.; Camilleri, P. Profiling of 2-Aminoacridone Derivatized Glycans by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 107–112.CrossRefGoogle Scholar
  18. 18.
    Saba, J. A.; Shen, X.; Jamieson, J. C.; Perreault, H. Effect of 1-Phenyl-3-Methyl-5-Pyrazolone Labeling on the Fragmentation Behavior of Asialo and Sialylated N-linked Glycans Under Electrospray Ionization Conditions. Rapid Commun. Mass Spectrom. 1999, 13, 704–711.CrossRefGoogle Scholar
  19. 19.
    Shen, X.; Perreault, H. Electrospray Ionization Mass Spectrometry of 1-Phenyl-3-Methyl-5-Pyrazolone Derivatives of Neutral and N-Acetylated Oligosaccharides. J. Mass Spectrom. 1999, 34, 502–510.CrossRefGoogle Scholar
  20. 20.
    Konig, S.; Leary, J. L. Evidence for Linkage Position Determination in Cobalt Coordination Pentasaccharides Using Ion Trap Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 1125–1134.CrossRefGoogle Scholar
  21. 21.
    Viseux, N.; de Hoffmann, E.; Domon, B. Structural Assignment of Permethylated Oligosaccharide Subunits Using Sequential Tandem Mass Spectrometry. Anal. Chem. 1998, 70, 4951–4959.CrossRefGoogle Scholar
  22. 22.
    Mock, K. K.; Davey, M.; Cottrell, J. S. The Analysis of Underivatized Oligosaccharides by Matrix-Assisted Laser Desorption Mass Spectrometry. Biochem. Biophys. Res. Commun. 1991, 177, 644–651.CrossRefGoogle Scholar
  23. 23.
    Harvey, D. J.; Küster, B.; Naven, T. J. P. Perspectives in the Glycosciences—Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry of Carbohydrates. Glycoconj. J. 1998, 15, 333–338.CrossRefGoogle Scholar
  24. 24.
    Tseng, K.; Hedrick, J. L.; Lebrilla, C. B. Catalog-Library Approach for the Rapid and Sensitive Structural Elucidation of Oligosaccahrides. Anal. Chem. 1999, 71, 3747–3754.CrossRefGoogle Scholar
  25. 25.
    Chai, W.; Piskarev, V.; Lawson, A. M. Negative-Ion Electrospray Mass Spectrometry of Neutral Underivatized Oligosaccharides. Anal. Chem. 2001, 73, 651–657.CrossRefGoogle Scholar
  26. 26.
    Bahr, U.; Pfenninger, A.; Karas, M.; Stahl, B. High-Sensitivity Analysis of Neutral Underivatized Oligosaccharides by Nanoelectrospray Mass Spectrometry. Anal. Chem. 1997, 69, 4530–4535.CrossRefGoogle Scholar
  27. 27.
    Lawson, A. M.; Chai, W.; Cashmore, G. C.; Stoll, M. S.; Hounsell, E. F.; Feizi, T. High-Sensitivity Structural Analysis of Oligosaccharide Probes (Neoglycolipids) by Liquid-Secondary-Ion Mass Spectrometry. Carbohydr. Res. 1990, 200, 47–57.CrossRefGoogle Scholar
  28. 28.
    Chai, W.; Luo, J.; Lim, C. K.; Lawson, A. M. Characterization of Heparin Oligosachcaride Mixtures as Ammonium Salts Using Electrospray Mass Spectrometry. Anal. Chem. 1998, 70, 2060–2066.CrossRefGoogle Scholar
  29. 29.
    Stoll, M. S.; Hounsell, E. F.; Lawson, A. M.; Chai, W.; Feizi, T. Microscale Sequencing of O-Linked Oligosaccharides Using Mild Periodate Oxidation of Alditols, Coupling to Phospholipid, and TLC-MS Analysis of the Resulting Neoglycolipids. Eur. J. Biochem. 1990, 189, 499–507.CrossRefGoogle Scholar
  30. 30.
    Chai, W.; Stoll, M. S.; Cashmore, G. C.; Lawson, A. M. Specificity of Mild Periodate Oxidation of Oligosaccharide-Alditols: Relevance to the Analysis of the Core-Branching Pattern of O-Linked Glycoprotein Oligosaccharides. Carbohydr. Res. 1993, 239, 107–115.CrossRefGoogle Scholar
  31. 31.
    Chai, W.; Yuen, C. T.; Feizi, T.; Lawson, A. M. Core-Branching Pattern and Sequence Analysis of Mannitol-Terminating Oligosaccharides by Neoglycolipid Technology. Anal. Biochem. 1999, 270, 314–322.CrossRefGoogle Scholar
  32. 32.
    Domon, B.; Costello, C. E. A Systematic Nomenclature for Carbohydrate Fragmentation in FAB-MS/MS Spectra of Glycoconjugates. Glycoconj. J. 1988, 5, 397–409.CrossRefGoogle Scholar
  33. 33.
    Thomsson, K. A.; Karlsson, H.; Hansson, G. C. Sequencing of Sulfated Oligosaccharides from Mucins by Liquid Chromatography and Electrospray Ionization Tandem Mass Spectrometry. Anal. Chem. 2000, 72, 4543–4549.CrossRefGoogle Scholar
  34. 34.
    Hardy, M. R.; Townsend, R. R. High-pH Anion Exchange Chromatography of Glycoprotin-Derived Carbohydrates. Methods Enzymol. 1994, 230, 208–225.CrossRefGoogle Scholar
  35. 35.
    Cheng, C.; Gross, M. L. Applications and Mechanisms of Charge-Remote Fragmentation. Mass Spectrom. Rev. 2000, 19, 398–420.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2002

Authors and Affiliations

  • Wengang Chai
    • 1
    Email author
  • Alexander M. Lawson
    • 1
  • Vladimir Piskarev
    • 2
  1. 1.MRC Glycosciences LaboratoryImperial College School of Medicine, Northwick Park HospitalHarrowUK
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations