Advertisement

Solvation of copper ions by acetone. Structures and sequential binding energies of Cu+(acetone) x , x = 1–4 from collision-induced dissociation and theoretical studies

  • Y. Chu
  • Z. Yang
  • M. T. RodgersEmail author
Focus: Ion Thermochemistry

Abstract

Collision-induced dissociation of Cu+(acetone) x , x = 1–4, with Xe is studied as a function of kinetic energy using guided ion beam mass spectrometry. In all cases, the primary and lowest energy dissociation channel observed is endothermic loss of one acetone molecule. The primary cross section thresholds are interpreted to yield 0 and 298 K bond energies after accounting for the effects of multiple ion-neutral collisions, internal energy of the complexes, and dissociation lifetimes. Density functional calculations at the B3LYP/6-31G* level of theory are used to determine the structures of these complexes and provide molecular constants necessary for the thermodynamic analysis of the experimental data. Theoretical bond dissociation energies are determined from single point calculations at the B3LYP/6-311+G(2d,2p) and MP2(full)/6-311+G(2d,2p) levels, using the B3LYP/6-31G* optimized geometries. The experimental bond energies determined here are in good agreement with previous experimental measurements made in a high-pressure mass spectrometer for the sum of the first and second bond energy (i.e., Cu+(acetone)2 → Cu+ + 2 acetone) when these results are properly anchored. The agreement between theory and experiment is reasonable in all cases, but varies both with the size of the cluster and the level of theory employed. B3LYP does an excellent job for the x = 1 and 3 clusters, but is systematically low for the x = 2 and 4 clusters such that the overall trends in sequential binding energies are not parallel. In contrast, all MP2 values are somewhat low, but the overall trends parallel the measured values for all clusters. The trends in the measured Cu+(acetone)x binding energies are explained in terms of 4s-3d σ hybridization effects and ligand-ligand repulsion in the clusters.

Keywords

Total Cross Section Bond Dissociation Energy Acetone Molecule Total Binding Energy Vanadium Monoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kumpf, R. A.; Dougherty, D. A. A Mechanism for Ion Selectivity in Potassium Channels: Computational Studies of Cation—π Interactions. Science 1993, 261, 1708–1710.CrossRefGoogle Scholar
  2. 2.
    Feller, D.; Dixon, D. A.; Nicholas, J. B. Binding Enthalpies for Alkali Metal Cation—Benzene Complexes Revisited. J. Phys. Chem. A 2000, 104, 11414–11419.CrossRefGoogle Scholar
  3. 3.
    Amicangelo, J. C.; Armentrout, P. B. Absolute Binding Energies of Alkali Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and ab Initio Theory. J. Phys. Chem. A 2000, 104, 11420–11432.CrossRefGoogle Scholar
  4. 4.
    Izatt, R. M.; Terry, R. E.; Haymore, B. L.; Hansen, N. K.; Dalley, A. G.; Avondet, A. G.; Christensen, J. J. Calorimetric Titration Study of the Interaction of Several Uni- and Bivalent Cations with 15-Crown-5, 18-Crown-6, and Two Isomers of Dicyclohexo-18-Crown-6 in Aqueous Solution at 25 °C and μ = 0.1. J. Am. Chem. Soc. 1976, 98, 7620–7626.CrossRefGoogle Scholar
  5. 5.
    Glendening, E. D.; Feller, D.; Thompson, M. A. An ab Initio Investigation of the Structure and Alkali Metal Cation Selectivity of 18-Crown-6. J. Am. Chem. Soc. 1994, 116, 10657–10669.CrossRefGoogle Scholar
  6. 6.
    Feller, D. Ab Initio Study of M+:18-Crown-6 Microsolvation. J. Phys. Chem. A 1997, 101, 2723–2731.CrossRefGoogle Scholar
  7. 7.
    More, M. B.; Ray, D.; Armentrout, P. B. Intrinsic Affinities of Alkali Metal Cations for 15-Crown-5 and 18-Crown-6: Bond Dissociation Energies of Gas-Phase M+-Crown Ether Complexes. J. Am. Chem. Soc. 1999, 121, 417–423.CrossRefGoogle Scholar
  8. 8.
    Armentrout, P. B. Cation—Ether Complexes in the Gas Phase: Thermodynamic Insight into Molecular Recognition. Int. J. Mass Spectrom. 1999, 193, 227–240.CrossRefGoogle Scholar
  9. 9.
    De Jong, F.; Reinhoudt, D. N. Stability and Reactivity of Crown—Ether Complexes. Adv. Phys. Org. Chem. 1980, 17, 279–433.CrossRefGoogle Scholar
  10. 10.
    Valina, A. B.; Amunugama, R.; Huang, H.; Rodgers, M. T. Collision-Induced Dissociation and Theoretical Studies of Na+—Acetonitrile Complexes. J. Phys. Chem. A 2001, 105, 11057–11068.CrossRefGoogle Scholar
  11. 11.
    Vitale, G.; Valina, A. B.; Huang, H.; Amunugama, R.; Rodgers, M. T. Solvation of Copper Ions by Acetonitrile. Structures and Sequential Binding Energies of Cu+(CH3CN)x, x = 1–5, from Collision-Induced Dissociation and Theoretical Studies. J. Phys. Chem. A 2001, 105, 11351–11364.CrossRefGoogle Scholar
  12. 12.
    Rodgers, M. T.; Armentrout, P. B. Absolute Alkali Metal Ion Binding Affinities of Several Azoles Determined by Threshold Collision-Induced Dissociation. Int. J. Mass Spectrom. 1999, 185/186/187, 359–380.CrossRefGoogle Scholar
  13. 13.
    Amunugama, R.; Rodgers, M. T. Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation and ab Initio Theory. Int. J. Mass Spectrom. 2000, 195/196, 439–457.CrossRefGoogle Scholar
  14. 14.
    Rodgers, M. T.; Stanley, J. R.; Amunugama, R. Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory. J. Am. Chem. Soc. 2000, 122, 10969–10978.CrossRefGoogle Scholar
  15. 15.
    Rodgers, M. T. Substituent Effects in the Binding of Alkali Metal Ions to Pyridines, Studied by Threshold Collision-Induced Dissociation and ab Initio Theory: The Methylpyridines. J. Phys. Chem. A 2001, 105, 2374–2383.CrossRefGoogle Scholar
  16. 16.
    Rodgers, M. T. Substituent Effects in the Binding of Alkali Metal Ions to Pyridines Studied by Threshold Collision-Induced Dissociation and ab Initio Theory: The Aminopyridines. J. Phys. Chem. A 2001, 105, 8145–8153.CrossRefGoogle Scholar
  17. 17.
    Amunugama, R.; Rodgers, M. T. Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory. J. Phys. Chem. A 2001, 105, 9883–9892.CrossRefGoogle Scholar
  18. 18.
    Rodgers, M. T.; Armentrout, P. B. Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies. J. Am. Chem. Soc. 2000, 122, 8548–8558.CrossRefGoogle Scholar
  19. 19.
    Rodgers, M. T.; Armentrout, P. B. Influence of d Orbital Occupation on the Binding of Metal Ions to Adenine. J. Am. Chem. Soc. accepted.Google Scholar
  20. 20.
    Rodgers, M. T.; Armentrout, P. B. Collision-Induced Dissociation Measurements on Li+(H2O)n, n = 1–6: The First Direct Measurement of the Li+-OH2 Bond Energy. J. Phys. Chem. A 1997, 101, 1238–1249.CrossRefGoogle Scholar
  21. 21.
    Rodgers, M. T.; Armentrout, P. B. Statistical Modeling of Competitive Threshold Collision-Induced Dissociation. J. Chem. Phys. 1998, 109, 1787–1800.CrossRefGoogle Scholar
  22. 22.
    Rodgers, M. T.; Ervin, K. M.; Armentrout, P. B. Statistical Modeling of Collision-Induced Dissociation Thresholds. J. Chem. Phys. 1997, 106, 4499–4508.CrossRefGoogle Scholar
  23. 23.
    Jones, R. W.; Staley, R. H. Relative Bond Dissociation Energies for Two-Ligand Complexes of Cu+ with Organic Molecules in the Gas Phase. J. Am. Chem. Soc. 1982, 104, 2296–2300.CrossRefGoogle Scholar
  24. 24.
    Deng, H.; Kebarle, P. Bond Energies of Copper Ion—Ligand L Complexes CuL2+ Determined in the Gas Phase by Ion—Ligand Exchange Equilibria Measurements. J. Am. Chem. Soc. 1998, 120, 2925–2931.CrossRefGoogle Scholar
  25. 25.
    Magnera, T. F.; David, D. E.; Stulik, D.; Orth, R. G.; Jonkman, H. T.; Michl, J. Production of Hydrated Metal Ions by Fast Ion or Atom Beam Sputtering. Collision-Induced Dissociation and Successive Hydration Energies of Gaseous Cu+ with 1–4 Water Molecules. J. Am. Chem. Soc. 1989, 111, 5036–5043.CrossRefGoogle Scholar
  26. 26.
    Dalleska, N. F.; Honma, K.; Sunderlin, L. S.; Armentrout, P. B. Solvation of Transition Metal Ions by Water. Sequential Binding Energies of M+(H2O)x (x = 1–4) for M = Ti to Cu Determined by Collision-Induced Dissociation. J. Am. Chem. Soc. 1994, 116, 3519–3528.CrossRefGoogle Scholar
  27. 27.
    Walter, D.; Armentrout, P. B. Sequential Bond Dissociation Energies of M+(NH3)x (x = 1–4) for M = Ti-Cu. J. Am. Chem. Soc. 1998, 120, 3176–3187.CrossRefGoogle Scholar
  28. 28.
    Koizumi, H.; Zhang, X.-G.; Armentrout, P. B. Collision-Induced Dissociation and Theoretical Studies of Cu+—Dimethyl Ether Complexes. J. Phys. Chem. A 2001, 105, 2444–2452.CrossRefGoogle Scholar
  29. 29. (a)
    Teloy, E.; Gerlich, D. Integral Cross Sections for Ion-Molecule Reactions I. The Guided Ion Beam Technique. Chem. Phys. 1974, 4, 417–427.CrossRefGoogle Scholar
  30. 29. (b)
    Gerlich, D. Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions. Diplomarbeit, University of Freiburg, Federal Republic of Germany, 1971.Google Scholar
  31. 29. (c)
    Gerlich, D. State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part I, Experiment. Ng, C.-Y.; Baer, M., Eds. In Advances in Chemical Physics series, Vol. LXXXII. Wiley: New York, 1992; p 1.CrossRefGoogle Scholar
  32. 30.
    Dalleska, N. F.; Honma, K.; Armentrout, P. B. Stepwise Solvation Enthalpies of Protonated Water Clusters: Collision-Induced Dissociation as an Alternative to Equilibrium Studies. J. Am. Chem. Soc. 1993, 115, 12125–12131.CrossRefGoogle Scholar
  33. 31.
    Aristov, N.; Armentrout, P. B. Collision-Induced Dissociation of Vanadium Monoxide Ion. J. Phys. Chem. 1986, 90, 5135–5140.CrossRefGoogle Scholar
  34. 32.
    Hales, D. A.; Armentrout, P. B. Effect of Internal Excitation on the Collision-Induced Dissociation and Reactivity of Co2+. J. Cluster Sci. 1990, 1, 127–142.CrossRefGoogle Scholar
  35. 33.
    Ervin, K. M.; Armentrout, P. B. Translational Energy Dependence of Ar+ + XY → ArX+ + Y (XY = H2, D2, HD) from Thermal to 30 eV c.m. J. Chem. Phys. 1985, 83, 166–189.CrossRefGoogle Scholar
  36. 34.
    Muntean, F.; Armentrout, P. B. Guided Ion Beam Study of Collision-Induced Dissociation Dynamics: Integral and Differential Cross Sections. J. Chem. Phys. 2001, 115, 1213–1228.CrossRefGoogle Scholar
  37. 35. (a)
    Beyer, T. S.; Swinehart, D. F. Number of Multiply-Restricted Partitions [A1]. Comm. Assoc. Comput. Machines 1973, 16, 379.Google Scholar
  38. 35. (b)
    Stein, S. E.; Rabinovitch, B. S. Accurate Evaluation of Internal Energy Level Sums and Densities Including Anharmonic Oscillators and Hindered Rotors. J. Chem. Phys. 1973, 58, 2438–2445.CrossRefGoogle Scholar
  39. 35. (c)
    On the Use of Exact State Counting Methods in RRKM Rate Calculations. Chem. Phys. Lett. 1977, 49, 183–188.Google Scholar
  40. 36. (a)
    Pople, J. A.; Schlegel, H. B.; Raghavachari, K.; DeFrees, D. J.; Binkley, J. F.; Frisch, M. J.; Whitesides, R. F.; Hout, R. F.; Hehre, W. J. Molecular Orbital Studies of Vibrational Frequencies. Int. J. Quant. Chem. Symp. 1981, 15, 269–278.Google Scholar
  41. 36. (b)
    DeFrees, D. J.; McLean, A. D. Molecular Orbital Predictions of the Vibrational Frequencies of Some Molecular Ions. J. Chem. Phys. 1985, 82, 333–341.CrossRefGoogle Scholar
  42. 37.
    Khan, F. A.; Clemmer, D. C.; Schultz, R. H.; Armentrout, P. B. Sequential Bond Energies of Cr(CO)x +, x = 1–6. J. Phys. Chem. 1993, 97, 7978–7987.CrossRefGoogle Scholar
  43. 38.
    Chesnavich, W. J.; Bowers, M. T. Theory of Translationally Driven Reactions. J. Phys. Chem. 1979, 83, 900–905.CrossRefGoogle Scholar
  44. 39.
    Schultz, R. H.; Crellin, K. C.; Armentrout, P. B. The Sequential Bond Energies of Fe(CO)x+ (x = 1–5): Systematic Effects on Collision-Induced Dissociation Measurements. J. Am. Chem. Soc. 1991, 113, 8590–8601.CrossRefGoogle Scholar
  45. 40.
    Meyer, F.; Khan, F. A.; Armentrout, P. B. Thermochemistry of Transition Metal Benzene Complexes: Binding Energies of M(C6H6)x+ (x = 1, 2) for M = Ti to Cu. J. Am. Chem. Soc. 1995, 117, 9740–9748.CrossRefGoogle Scholar
  46. 41.
    Dalleska, N. F.; Honma, K.; Armentrout, P. B. Stepwise Solvation Enthalpies of Protonated Water Clusters: Collision-Induced Dissociation as an Alternative to Equilibrium Studies. J. Am. Chem. Soc. 1993, 115, 12125–12131.CrossRefGoogle Scholar
  47. 42.
    Armentrout, P. B.; Simons, J. Understanding Heterolytic Bond Cleavage. J. Am. Chem. Soc. 1992, 114, 8627–8633.CrossRefGoogle Scholar
  48. 43.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.9. Gaussian, Inc: Pittsburgh PA, 1998.Google Scholar
  49. 44.
    Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.CrossRefGoogle Scholar
  50. 45.
    Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Function of the Electron Density. Phys. Rev. B 1988, 37, 785–789.CrossRefGoogle Scholar
  51. 46.
    Foresman, J. B.; Frisch, Æ. Exploring Chemistry with Electronic Structure Methods; 2nd ed. Gaussian: Pittsburgh, 1996 p 64.Google Scholar
  52. 47.
    Boys, S. F.; Bernardi, R. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1979, 19, 553–566.CrossRefGoogle Scholar
  53. 48.
    Van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G. C. M.; van Lenthe, J. H. State of the Art in Counterpoise Theory. Chem. Rev. 1994, 94, 1873–1885.CrossRefGoogle Scholar
  54. 49.
    Lifshitz, C. Recent Developments in Applications of RRKM-QET. Adv. Mass Spectrom. 1989, 11, 113–729.Google Scholar
  55. 50.
    Figures were generated using the output of Gaussian 98 geometry optimizations in Hyperchem computational chemistry software package, version 5.0, Hypercube Inc., 1997.Google Scholar
  56. 51.
    Davidson, W. R.; Kebarle, P. Ionic Solvation by Aprotic Solvents. Gas Phase Solvation of the Alkali Metal Ions by Acetonitrile. J. Am. Chem. Soc. 1976, 98, 6125–6133.CrossRefGoogle Scholar
  57. 52.
    McKenna, A. G.; McKenna, J. F. Teaching VSEPR Theory. J. Chem. Edu. 1984, 61, 771–773.CrossRefGoogle Scholar
  58. 53.
    Bartlett, R. J. Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules. Annu. Rev. Phys. Chem. 1981, 32, 359–401.CrossRefGoogle Scholar
  59. 54.
    Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory. Wiley: New York, 1986.Google Scholar
  60. 55.
    Feller, D. A Complete Basis Set Estimate of Cation—π Bond Strengths: Na+(ethylene) and Na+(benzene). Chem. Phys. Lett. 2000, 322, 543–548.CrossRefGoogle Scholar
  61. 56.
    Weast, R. C.; Astle, M. J. Handbook of Chemistry and Physics. CRC Press, Inc: Florida, 1982 p 3–61.Google Scholar
  62. 57.
    Miller, K. J. Additivity Methods in Molecular Polarizability. J. Am. Chem. Soc. 1990, 112, 8533–8542.CrossRefGoogle Scholar
  63. 58. (a)
    Bauschlicher, C. W.; Langhoff, S. R.; Partridge, H. The Binding Energies of Cu+-(H2O)n and Cu+-(NH3)n (n = 1–4). J. Chem. Phys. 1991, 94, 2068–2072.CrossRefGoogle Scholar
  64. 58. (b)
    Bauschlicher, C. W.; Partridge, H.; Langhoff, S. R. Theoretical Study of Transition-Metal Ions Bound to Benzene. J. Phys. Chem. 1992, 96, 3273–3278.CrossRefGoogle Scholar
  65. 58. (c)
    Langhoff, S. R.; Bauschlicher, C. W.; Partridge, H.; Sodupe, M. Theoretical Study of One and Two Ammonia Molecules Bound to the First-Row Transition Metal Ions. J. Phys. Chem. 1991, 95, 10677–10681.CrossRefGoogle Scholar
  66. 59.
    Thermal corrections to the values reported by Dalleska et al. [26] were determined by Vitale et al. [11] from theoretical calculations at the B3LYP/6-311 + G(2d,2p)//B3LYP/6-31G* level of theory for H2O, Cu+(H2O), and Cu+(H2O)2.Google Scholar
  67. 60.
    Thermal corrections to the values reported by Walter and Armentrout [27] were determined by Vitale et al. [11] from theoretical calculations at the B3LYP/6-311 + G(2d,2p)//B3LYP/6-31G* level of theory for NH3, Cu+(NH3), and Cu+(NH3)2.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2002

Authors and Affiliations

  1. 1.Department of ChemistryWayne State UniversityDetroit

Personalised recommendations