A dynamic ion cooling technique for FTICR mass spectrometry

  • Michael V. Gorshkov
  • Christophe D. Masselon
  • Gordon A. Anderson
  • Harold R. Udseth
  • Richard Harkewicz
  • Richard D. Smith
Short Communication

Abstract

A fast dynamic ion cooling technique based upon the adiabatic invariant phenomenon for Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is presented. The method cools ions in the FTICR trap more efficiently, within a few hundred milliseconds without the use of a buffer gas, and results in a substantial signal enhancement. All performance aspects of the FTICR spectrum, e.g., peak intensities, mass resolution, and mass accuracy, improve significantly compared with cooling based on ion—ion interactions. The method may be useful in biological applications of FTICR, such as in proteomic studies involving extended on-line liquid chromatography (LC) separations, in which both the duty cycle and mass accuracy are crucially important.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comisarow, M. B.; Marshall, A. G. Chem. Phys. Lett. 1974, 25, 282–283.CrossRefGoogle Scholar
  2. 2.
    Comisarow, M. B.; Marshall, A. G. Chem. Phys. Lett. 1974, 26, 489–490.CrossRefGoogle Scholar
  3. 3.
    Marshall, A. G. Int. J. Mass Spectrom. Ion Proc. 2000, 200, 331–356.Google Scholar
  4. 4.
    Veenstra, T. D.; Martinovic, S.; Anderson, G. A.; Pasa-Tolic, L.; Smith, R. D. J. Am. Soc. Mass Spectrom. 2000, 11, 78–82.CrossRefGoogle Scholar
  5. 5.
    Belov, M. E.; Nikolaev, E. N.; Anderson, G. A.; Udseth, H. R.; Conrads, T. P.; Veenstra, T. D.; Masselon, C. D.; Gorshkov, M. V.; Smith, R. D. Anal. Chem. 2001, 73, 253–261.CrossRefGoogle Scholar
  6. 6.
    Savard, G.; Becker, S.; Bollen, G.; Kluge, H.-J.; Moore, R. B.; Schweikhard, L.; Stolzenberg, H.; Wiess, U. Phys. Lett. A 1991, 158, 247–252.CrossRefGoogle Scholar
  7. 7.
    Rempel, D. L.; Gross, M. L. J. Am. Soc. Mass Spectrom. 1992, 3, 590–594.CrossRefGoogle Scholar
  8. 8.
    Brown, L. S.; Gabrielse, G. Rev. Mod. Phys. 1986, 58, 233–311.CrossRefGoogle Scholar
  9. 9.
    Larson, D. J.; Bergquist, J. C.; Bollinger, J. J.; Itano, W. M.; Wineland, D. J. Phys. Rev. Lett. 1986, 57, 70–73.CrossRefGoogle Scholar
  10. 10.
    Li, G.-Z.; Guan, S.; Marshall, A. G. J. Am. Soc. Mass Spectrom. 1997, 8, 793–800.CrossRefGoogle Scholar
  11. 11.
    Dubin, D. H. E.; O’Neil, T. M. Phys. Rev. Lett. 1986, 56, 728–731.CrossRefGoogle Scholar
  12. 12.
    Li, G. Z.; Poggiani, R.; Testera, G.; Werth, G. Z. Phys. 1991, 22, 375–385.Google Scholar
  13. 13.
    Landau, L. D.; Lifshitz, E. M. Theoretical Physics, Vol I; Pergamon: Oxford, 1969; pp 193–197.Google Scholar
  14. 14.
    He, F.; Hendrickson, L. C.; Marshall, A. G. Anal. Chem. 2001, 73, 647–650.CrossRefGoogle Scholar
  15. 15.
    Udseth, H. R.; Gorshkov, M. V.; Belov, M. L.; Pasa-Tolic, L.; Bruce, J. E.; Masselon, C. D.; Harkewicz, R.; Anderson, G. A.; Smith, R. D. Proceedings of the 37th ASMS Conference on Mass Spectrometry and Allied Topics; Dallas, TX, June 1999.Google Scholar
  16. 16.
    Anderson, G. A.; Bruce, J. E. ICR-2LS Software Package; Pacific Northwest National Laboratory 1995; 1111–1112.Google Scholar
  17. 17.
    Marshall, A. G.; Wang, T.-C. L.; Ricca, T. L. J. Am. Chem. Soc. 1985, 107, 7893–7898.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2001

Authors and Affiliations

  • Michael V. Gorshkov
    • 1
  • Christophe D. Masselon
    • 1
  • Gordon A. Anderson
    • 1
  • Harold R. Udseth
    • 1
  • Richard Harkewicz
    • 1
  • Richard D. Smith
    • 1
  1. 1.Environmental Molecular Sciences LaboratoryPacific Northwest National Laboratory, MS K8-98RichlandUSA

Personalised recommendations