Dissociation reactions of gaseous ferro-, ferri-, and apo-cytochrome c ions

  • J. Mitchell Wells
  • Gavin E. Reid
  • Brian J. Engel
  • Peng Pan
  • Scott A. McLuckey
Short Communication

Abstract

Electrochemical reduction of the iron bound in the heme group of cytochrome c is shown to occur in the nano-electrospray capillary if the protein is sprayed from neutral water using a steel wire as the electrical contact. Quadrupole ion trap collisional activation is used to study the dissociation reactions of cytochrome c as a function of the oxidation state of the iron. Oxidized (Fe(III)) cytochrome c dissociates via sequence-specific amide bond cleavage, while the reduced (Fe(II)) form of the protein dissociates almost exclusively by loss of protonated heme. Apo-cytochrome c, from which the heme has been removed either via gas-phase dissociation of the reduced holo-protein or via solution chemistry, dissociates via amide bond cleavage in similar fashion to the oxidized holo-protein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kelleher, N. L.; Lin, H. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W. Top-down vs. Bottom-up Protein Characterization by Tandem High-resolution Mass Spectrometry. J. Am. Chem. Soc. 1999, 121, 806–812.CrossRefGoogle Scholar
  2. 2.
    Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. Automated de novo Sequencing of Proteins by Tandem High-Resolution Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10313–10317.CrossRefGoogle Scholar
  3. 3.
    Aebersold, R.; Goodlet, D. R. Mass Spectrometry in Proteomics. Chem. Rev. 2001, 101, 269–296.CrossRefGoogle Scholar
  4. 4.
    Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem. 2000, 72, 563–573.CrossRefGoogle Scholar
  5. 5.
    Wu, Q.; Van Orden, S.; Cheng, X.; Bakhtiar, R.; Smith, R.D. Characterization of Cytochrome c Variants with High-Resolution FTICR Mass Spectrometry: Correlation of Fragmentation and Structure. Anal. Chem. 1995, 67, 2498–2509.CrossRefGoogle Scholar
  6. 6.
    Smith, R. D.; Barinaga, C. J.; Udseth, H. R. Tandem Mass Spectrometry of Highly Charged Cytochrome c Molecular Ions Produced by Electrospray Ionization. J. Phys. Chem. 1989, 93, 5019–5022.CrossRefGoogle Scholar
  7. 7.
    Li, Y.-T.; Hsieh, Y.-L.; Henion, J. D.; Ganem, B. Studies on Heme Binding in Myoglobin, Hemoglobin, and Cytochrome c by Ion Spray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1993, 4, 631–637.CrossRefGoogle Scholar
  8. 8.
    Vanberkel, G. J.; Glish, G. L.; McLuckey, S. A. Electrospray Ionization Combined with Ion Trap Mass Spectrometry. Anal. Chem. 1990, 62, 1284–1295.CrossRefGoogle Scholar
  9. 9.
    Stephenson, J. L.; McLuckey, S. A. Adaptation of the Paul Trap for Study of the Reactions of Multiply-charged Cations with Singly-charged Anions. Int. J. Mass Spectrom. Ion Processes 1997, 162, 89–106.CrossRefGoogle Scholar
  10. 10.
    Roepstorff, P.; Fohlman, J. Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biomed. Mass Spectrom. 1984, 11, 601–601.CrossRefGoogle Scholar
  11. 11.
    Biemann, K. Contributions of Mass-Spectrometry to Peptide and Protein-Structure. Biomed. Environ. Mass Spectrom. 1988, 16, 99–111.CrossRefGoogle Scholar
  12. 12.
    Gross, D. S.; Yuexing, Z.; Williams, E. R. Dissociation of Heme-globin Complexes by Blackbody Infrared Radiative Dissociation: Molecular Specificity in the Gas Phase?. J. Am. Soc. Mass Spectrom 1997, 8, 519–524.CrossRefGoogle Scholar
  13. 13.
    Falk, J. E. Porphyrins and Metalloporphyrins: Their General, Physical, and Coordination Chemistry, and Laboratory Methods; Elsevier Publishing Company: New York, 1964.Google Scholar
  14. 14.
    Van Berkel, G. J.; Zhou, F.; Aronson, J. T. Changes in Bulk Solution pH Caused by the Inherent Controlled-current Electrolytic Process of an Electrospray Ion Source. Int. J. Mass Spectrom. Ion Proc. 1997, 162, 55–67.CrossRefGoogle Scholar
  15. 15.
    Perez-Benito, J. F.; Arias, C. Kinetics and Mechanism of the Reaction between Oxidized Cytochrome c and Ascorbic Acid. Collect. Czech. Chem. Commun. 1991, 56, 478–490.CrossRefGoogle Scholar
  16. 16.
    Adegite, A.; Okpanachi, M. I. Kinetics and Mechanism of Reduction of Horse-heart Cytochrome c by Hexaammineru-thenium(II) Ion. Reactivities of the Electronic Isomers of Cytochrome c. J. Am. Chem. Soc. 1980, 102, 2832–2836.CrossRefGoogle Scholar
  17. 17.
    Johnson, K. A.; Shira, B. A.; Anderson, J. L.; Amster, I. J. Chemical and Electrochemical Reduction of Metalloproteins with High-resolution Electrospray Ionization Mass Spectrometry Detection. Anal. Chem. 2001, 73, 803–808.CrossRefGoogle Scholar
  18. 18.
    He, F.; Hendrickson, C. L.; Marshall, A. G. Unequivocal Determination of Metal Atom Oxidation State in Naked Heme Proteins: Fe(III)Myoglobin, Fe(III)Cytochrome c, Fe(III)Cytochrome b5, and Fe(III)Cytochrome b5 L47R. J. Am. Soc. Mass Spectrom. 2000, 11, 120–126.CrossRefGoogle Scholar
  19. 19.
    Schaaff, T. G.; Cargile, B. J.; Stephenson, J. L.; McLuckey, S. A. Ion trap Collisional Activation of the (M+2H)2+ − (M+17H)17+ Ions of Human Hemoglobin Beta-chain. Anal. Chem. 2000, 72, 899–907.CrossRefGoogle Scholar
  20. 20.
    Reid, G. E.; Wu, J.; Chrisman, P. A.; Wells, J. M.; McLuckey, S. A. Charge State Dependent Sequence Analysis of Protonated Ubiquitin Ions via Ion Trap Tandem Mass Spectrometry. Anal. Chem. 2001, in press.Google Scholar
  21. 21.
    Newton, K. A.; Chrisman, P. A.; Reid, G. E.; Wells, J. M.; McLuckey, S. A. Gaseous Apomyoglobin Ion Dissociation in a Quadrupole Ion Trap: (M+2H)2+ − (M+21H)21+. Int. J. Mass Spectrom. 2001, in press.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2001

Authors and Affiliations

  • J. Mitchell Wells
    • 1
  • Gavin E. Reid
    • 1
  • Brian J. Engel
    • 1
  • Peng Pan
    • 1
  • Scott A. McLuckey
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations