Advertisement

Collision-induced dissociation and theoretical studies of Cu+-dimethoxyethane complexes

  • Hideya Koizumi
  • P. B. ArmentroutEmail author
Focus: Metal-Ion Interactions

Abstract

Collision-induced dissociation of the dimethoxyethane (DXE) complexes with copper ions, Cu+(DXE)n, n = 1 and 2, is studied using kinetic energy dependent guided ion beam mass spectrometry. For Cu+(DXE)2, the only product formed corresponds to endothermic loss of a neutral ligand, while the Cu+(DXE) complex dissociates by several competitive channels. The cross-section thresholds for single ligand loss are interpreted to yield 0 and 298 K bond energies for Cu+-DXE and (DXE)Cu+-DXE after accounting for the effects of multiple ion-molecule collisions, internal energy of the reactant ions, and dissociation lifetimes. We find absolute 0 K bond dissociation energies for these complexes of 2.74 ± 0.08 and 1.87 ± 0.06 eV, respectively. These values are compared with theoretical values obtained using density functional and second order Møller-Plesset perturbation, MP2, theories. We also compare our results with previously studied alkali cation-ether complexes. Although Cu+ and all alkali cations have 1S electronic ground states, the comparison shows different trends for Cu+ because of hybridization effects involving the valence d-electrons.

Keywords

Bond Energy Bond Dissociation Energy Maximum Cross Section Coinage Metal Phase Space Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koizumi, H.; Armentrout, P. B. J. Phys. Chem. A2001, in press.Google Scholar
  2. 2.
    Ray, D.; Feller, D.; More, M. B.; Glendening, E. D.; Armentrout, P. B. J. Phys.Chem. 1996, 100, 1605.CrossRefGoogle Scholar
  3. 3.
    More, M. B.; Ray, D.; Armentrout, P. B. J. Phys. Chem. 1997, 101, 831.Google Scholar
  4. 4.
    More, M. B.; Ray, D.; Armentrout, P. B. J. Phys. Chem. A 1997, 101, 4254.CrossRefGoogle Scholar
  5. 5.
    More, M. B.; Ray, D.; Armentrout, P. B. J. Phys. Chem. 1997, 101, 7007.Google Scholar
  6. 6.
    Bauschlicher, C. W.; Langhoff, S. R.; Partridge, H. J. Chem. Phys. 1991, 94, 2068.CrossRefGoogle Scholar
  7. 7.
    Holland, P. M.; Castleman, A. W. J. Am. Chem. Soc. 1982, 76, 4195.Google Scholar
  8. 8.
    Magnera, T. F.; David, D. E.; Stulik, D.; Orth, R. G.; Jonkman, H. T.; Michl, J. J. Am. Chem. Soc. 1989, 111, 5036.CrossRefGoogle Scholar
  9. 9.
    Magnera, T. F.; David, D. E.; Michl, J. J. Am. Chem. Soc. 1989, 111, 4100.CrossRefGoogle Scholar
  10. 10.
    Marinelli, P. J.; Squires, R. R. J. Am. Chem. Soc. 1989, 111, 4101.CrossRefGoogle Scholar
  11. 11.
    Dalleska, N. F.; Honma, K.; Sunderlin, L. S.; Armentrout, P. B. J. Am. Chem. Soc. 1994, 116, 3519.CrossRefGoogle Scholar
  12. 12.
    Dalleska, N. F.; Tjelta, B. L.; Armentrout, P. B. J. Phys. Chem. 1994, 98, 4191.CrossRefGoogle Scholar
  13. 13.
    Feller, D.; Glendening, E. D.; de Jong, W. A. J. Chem. Phys. 1999, 110, 1475.CrossRefGoogle Scholar
  14. 14.
    Horwitz, E. P.; Dietz, M. L.; Fisher, D. E. Solvent Extr. Ion Exch. 1991, 9, 1.CrossRefGoogle Scholar
  15. 15.
    Grate, J. W.; Strebin, R.; Janata, J.; Egorov, O.; Ruzicka, J. J. Anal. Chem. 1996, 68, 333.CrossRefGoogle Scholar
  16. 16.
    Ray, D.; Feller, D.; More, M. B.; Glendening, E. D.; Armentrout, P. B. J. Phys. Chem. 1996, 100, 16116.CrossRefGoogle Scholar
  17. 17.
    More, M. B.; Ray, D.; Armentrout, P. B. J. Am. Chem. Soc. 1999, 121, 417.CrossRefGoogle Scholar
  18. 18.
    Ervin, K. M.; Armentrout, P. B. J. Chem. Phys. 1985, 83, 166.CrossRefGoogle Scholar
  19. 19.
    Schultz, R. H.; Armentrout, P. B. Int. J. Mass Spectrom. Ion Processes 1991, 107, 29.CrossRefGoogle Scholar
  20. 20.
    Schultz, R. H.; Armentrout, P. B. J. Chem. Phys. 1992, 96, 1046.CrossRefGoogle Scholar
  21. 21.
    Schultz, R. H.; Crellin, K. C.; Armentrout, P. B. J. Am. Chem. Soc. 1991, 113, 8590.CrossRefGoogle Scholar
  22. 22.
    Khan, F. A.; Clemmer, D. E.; Schultz, R. H.; Armentrout, P. B. J. Phys. Chem. 1993, 97, 7978.CrossRefGoogle Scholar
  23. 23.
    Gerlich, D. In State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part 1: Experiment; Ng, C. Y. and Baer, M. Eds., Advances in Chemical Physics Series, Vol. LXXXII, John Wiley & Sons Inc., 1992; pp. 1–176.Google Scholar
  24. 24.
    Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1986, 90, 5135.CrossRefGoogle Scholar
  25. 25.
    Beyer, T. S.; Swinehart, D. F. Comm. Assoc. Comput. Machines 1973, 16, 379. Stein S. E.; Rabinovitch, B. S. J. Chem. Phys. 1973, 58, 2438. Stein, S. E.; Rabinovitch, B. S. Chem. Phys. Lett. 1977, 49, 183. Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell Scientific Publications: Oxford, 1990, p. 1.Google Scholar
  26. 26.
    Hales, D. A.; Lian, L.; Armentrout, P. B. Int. J. Mass Spectrom. Ion Processes 1990, 102, 269.CrossRefGoogle Scholar
  27. 27.
    Marcus, R. A.; Rice, O. K. J. Phys. Colloid Chem. 1951, 55, 894; Marcus, R.A. J. Chem. Phys. 1952, 20, 359; Rosenstock, H. M.; Wallenstein, M. B.; Wahrhaftig, A. L.; Eyring, H. Proc. Natl. Acad. Sci. USA, 1952, 38, 667.CrossRefGoogle Scholar
  28. 28.
    Rodgers, M. T.; Ervin, K. M.; Armentrout, P. B. J. Chem. Phys. 1997, 106, 4499.CrossRefGoogle Scholar
  29. 29.
    Waage, E. V.; Rabinovitch, B. S. Chem. Rev. 1970, 70, 377.CrossRefGoogle Scholar
  30. 30.
    Boo, B. H.; Armentrout, P. B. J. Am. Chem. Soc. 1987, 109, 3459. Ervin, K. M.; Armentrout, P. B. J. Phys. Chem. 1984, 88, 5454. Armentrout, P. B. In Structure/Reactivity and Thermochemistry of Ions; Ausloos, P.; Lias, S. G. Eds.; Reidel,: Dordrecht, 1987; pp 97.CrossRefGoogle Scholar
  31. 31.
    Armentrout, P. B. In Advances in Gas-phase Ion Chemistry; Adams, N. G.; Babcock, L. M. Eds.; JAI: Greenwich, 1992, Vol 1, pp 83.Google Scholar
  32. 32.
    Armentrout, P. B.; Simons, J. Am. Chem. Soc. 1992, 114, 8627.CrossRefGoogle Scholar
  33. 33.
    Rodgers, M. T.; Armentrout, P. B. J. Chem. Phys. 1998, 109, 1787.CrossRefGoogle Scholar
  34. 34.
    Gaussian 98, Revision A.7, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian, Inc., Pittsburgh PA, 1998.Google Scholar
  35. 35.
    Becke, A. D. J. Chem. Phys. 1993, 98, 5648.CrossRefGoogle Scholar
  36. 36.
    Møller, C.; Plesset, M. S. Physical Review, 1934, 46, 618.CrossRefGoogle Scholar
  37. 37.
    Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.CrossRefGoogle Scholar
  38. 38.
    Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Foresman, J. B.; Frisch, A. E.; Gaussian, Inc.: Pittsburgh, PA, 1996.Google Scholar
  39. 39.
    Luna, A.; Alcami, M.; Mo, O.; Yanez, M. Chem. Phys. Lett. 2000, 320, 129.CrossRefGoogle Scholar
  40. 40.
    Ghanty, T. K.; Davidson, E. R. Int. J. Quantum Chemistry 2000, 77, 291.CrossRefGoogle Scholar
  41. 41.
    Moore, C. E. Atomic Energy Levels, NSRDS-NBS 35, Washington D.C., 1971.Google Scholar
  42. 42.
    Georgiadis, R.; Fisher, E. R.; Armentrout, P. B. J. Am. Chem. Soc. 1989, 111, 4251.CrossRefGoogle Scholar
  43. 43.
    Lias, S. G.; Bartmess, J. E.; Liebman J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. No. 1.Google Scholar
  44. 44.
    Hill, S. E.; Glendening, E. D.; Feller, D. J. Phys. Chem. A 1997, 101, 6125.CrossRefGoogle Scholar
  45. 45.
    Wilson, R. G.; Brewer, G. R. Ion Beams, Wiley: New York, 1973.Google Scholar
  46. 46.
    Armentrout, P. B. Int. J. Mass Spectrom. 1999, 193, 227.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2001

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations