Fragmentation mechanisms of oligodeoxynucleotides: Effects of replacing phosphates with methylphosphonates and thymines with other bases in T-rich sequences



This article reports another step in an ongoing effort to understand the fragmentation of T-rich oligodeoxynucleotides. We extended an earlier investigation of T-rich 4-mers [1] to T-rich 6-mers, 8-mers and 10-mers by using four different tandem mass spectrometric methods. The methods include low-energy collisionally activated decomposition (CAD) of electrospray ionization (ESI)-produced ions, source-CAD of ESI-produced ions, post-source decay (PSD), and CAD of matrix assisted laser desorption ionization (MALDI)-generated ions. The most abundant fragment ions produced from [M − 2H]2− precursors upon low-energy CAD in an ion trap are the [a − B] and their complementary w ions. The predominant cleavage sites for T-rich oligodeoxynucleotides are always the 3′ C-O bonds adjoining a non-T nucleobase (i.e., a base with a higher proton affinity (PA) than that of T). The relative abundance of [a − B] correlates with the PAs of the nucleobases, underscoring the importance of proton transfer to the base. The propensity to form [a − B] ions falls in the order of G > C ≈ A ≫ T. Structural isomers up to 10-mers can be readily sequenced and distinguished with each of the four tandem mass spectrometric methods applied. The fragmentation of oligodeoxynucleotides in which various phosphates were replaced with methylphosphonate is a measure of the participation of the phosphate proton in the formation of [a − B] ions. For 4 and 5-mers, transfer of an acidic proton from the 5′-phosphate to the departing base is the initiating step in the formation of [a − B] ions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, Z.; Wan, K. X.; Ramanathan, R.; Taylor, J. S.; Gross, M. L. Structure and fragmentation mechanisms of isomeric T-rich oligodeoxynucleotides: a comparison of four tandem mass spectrometric methods. J. Am. Soc. Mass Spectrom. 1998, 9, 683–691.CrossRefGoogle Scholar
  2. 2.
    Taylor, J. S. Unraveling the molecular pathway from sunlight to skin cancer. Acc. Chem. Res. 1994, 27, 76–82.CrossRefGoogle Scholar
  3. 3.
    Burlingame, A. L.; Boyd, R. K.; Gaskell, S. J. Mass spectrometry. Anal. Chem. 1996, 68, 599–651.CrossRefGoogle Scholar
  4. 4.
    McLuckey, S. A.; Habibi-Goudarzi, S. Decompositions of multiply charged oligonucleotide anions. J. Am. Chem. Soc. 1993, 115, 12085–12095.CrossRefGoogle Scholar
  5. 5.
    Rodgers, M. T.; Campbell, S.; Marzluff, E.; Beauchamp, J. L. Low-energy collision-induced dissociation of deprotonated dinucleotides: determination of the energetically favored dissociation pathways and the relative acidities of the nucleic acid bases. Int. J. Mass Spectrom. Ion Processes 1994, 137, 121–149.CrossRefGoogle Scholar
  6. 6.
    Barry, J. P.; Vouros, P.; Van Schepdael, A.; Law, S.-J. Mass and sequence verification of modified oligonucleotides using electrospray tandem mass spectrometry. J. Mass Spectrom. 1995, 30, 993–1006.CrossRefGoogle Scholar
  7. 7.
    Nordhoff, E.; Karas, M.; Cramer, R.; Hahner, S.; Hillenkamp, F.; Kirpekar, F.; Lezius, A.; Muth, J.; Meier, C.; Engels, J. W. Direct mass spectrometric sequencing of low-picomole amounts of oligodeoxynucleotides with up to 21 bases by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 1995, 30, 99–112.CrossRefGoogle Scholar
  8. 8.
    Zhu, L.; Parr, G. R.; Fitzgerald, M. C.; Nelson, C. M.; Smith, L. M. Oligodeoxynucleotide fragmentation in MALDI/TOF mass spectrometry using 355-nm radiaton. J. Am. Chem. Soc. 1995, 117, 6048–6056.CrossRefGoogle Scholar
  9. 9.
    Wan, K. X.; Gross, J.; Hillenkamp, F.; Gross, M. L. Fragmentation mechanism of oligodeoxynucleotides studied by H/D exchange and ESI tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 193–205.CrossRefGoogle Scholar
  10. 10.
    Gross, J.; Hillenkamp, F.; Wan, K. X.; Gross, M. L. Metastable decay of negatively charged DNA analyzed with UV-MALDI-PSD and deuterium exchange. J. Am. Soc. Mass Spectrom. 2001, 12, 180–192.CrossRefGoogle Scholar
  11. 11.
    Gross, M. L. Tandem mass spectrometry: multisector magnetic instruments. Methods Enzymol. 1990, 193, 131–153.CrossRefGoogle Scholar
  12. 12.
    Greco, F.; Liguori, A.; Sindona, G.; Uccella, N. Gas-phase proton affinity of deoxyribonucleosides and related nucleo-bases by fast atom bombardment tandem mass spectrometry. J. Am. Chem. Soc. 1990, 112, 9092–9096.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2001

Authors and Affiliations

  1. 1.Department of ChemistryWashington UniversitySt. LouisUSA

Personalised recommendations