The methanol-induced conformational transitions of β-lactoglobulin, cytochrome c, and ubiquitin at low pH: A study by electrospray ionization mass spectrometry

  • Kodali Ravindra Babu
  • Annie Moradian
  • D. J. Douglas
Article

Abstract

The methanol-induced conformational transitions under acidic conditions for β-lactoglobulin, cytochrome c, and ubiquitin, representing three different classes of proteins with β-sheets, α-helices, and both α-helices and β-sheets, respectively, are studied under equilibrium conditions by electrospray ionization mass spectrometry (ESI-MS). The folding states of proteins in solution are monitored by the charge state distributions that they produce during ESI and by hydrogen/deuterium (H/D) exchange followed by ESI-MS. The changes in charge state distributions are correlated with earlier studies by optical and other methods which have shown that, in methanol, these proteins form partially unfolded intermediates with induced α-helix structure. Intermediate states formed at about 35% methanol concentration are found to give bimodal charge state distributions. The same rate of H/D exchange is shown by the two contributions to the bimodal distributions. This suggests the intermediates are highly flexible and may consist of a mixture of two or more rapidly interconverting conformers. H/D exchange of proteins followed by ESI-MS shows that helical denatured states, populated at around 50% methanol concentration, transform into more protected structures with further increases in methanol concentration, consistent with previous circular dicroism studies. These more protected structures still produce high charge states in ESI, similar to those of the fully denatured proteins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, P. S.; Baldwin, R. L. Annu. Rev. Biochem. 1990, 59, 631–660.CrossRefGoogle Scholar
  2. 2.
    Dobson, C. M. Curr. Opin. Struct. Biol. 1991, 1, 22–27.CrossRefGoogle Scholar
  3. 3.
    Privalov, P. J. Mol. Biol. 1996, 258, 707–725.CrossRefGoogle Scholar
  4. 4.
    Creighton, T. E.; Darby, N. J.; Kemmink, J. FASEB J. 1996, 10, 110–118.Google Scholar
  5. 5.
    Freire, E.; Murphy, K. P.; Sanchez-Ruiz, J. M.; Galisteo, M. L.; Privalov, P. L. Biochemistry 1992, 31, 250–256.CrossRefGoogle Scholar
  6. 6.
    Herskovits, T. T.; Gadegbeku, B.; Jaillet, H. J. Biol. Chem. 1970, 245, 2588–2598.Google Scholar
  7. 7.
    Fink, A. L.; Painter, B. Biochemistry 1987, 26, 1665–1671.CrossRefGoogle Scholar
  8. 8.
    Nakano, T.; Fink, A. L. J. Biol. Chem. 1990, 265, 12356–12362.Google Scholar
  9. 9.
    Dyson, H. J.; Merutka, G.; Waltho, J. P.; Lerner, R. A.; Wright, P. E. J. Mol. Biol. 1992, 226, 795–817.CrossRefGoogle Scholar
  10. 10.
    Dyson, H. J.; Sayre, J. R.; Merutka, G.; Shin, H. C.; Lerner, R. A.; Wright, P. E. J. Mol. Biol. 1992, 226, 819–835.CrossRefGoogle Scholar
  11. 11.
    Shiraki, K.; Nishikawa, K.; Goto, Y. J. Mol. Biol. 1995, 245, 180–194.CrossRefGoogle Scholar
  12. 12.
    Hirota, N.; Mizuno, K.; Goto, Y. Protein Sci. 1997, 6, 416–421.CrossRefGoogle Scholar
  13. 13.
    Harding, M. M.; Williams, D. H.; Woolfson, D. N. Biochemistry 1991, 30, 3120–3128.CrossRefGoogle Scholar
  14. 14.
    Buck, M.; Radford, S. E.; Dobson, C. M. Biochemistry 1993, 32, 667–678.CrossRefGoogle Scholar
  15. 15.
    Bychkova, V. E.; Dujsekina, A. E.; Klenin, S. I.; Tiktopulo, E. I.; Uversky, V. N.; Ptitsyn, O. B. Biochemistry 1996, 35, 6058–6063.CrossRefGoogle Scholar
  16. 16.
    Kamarati, Y. O.; Konno, T.; Kataoka, M.; Akasaka, K. J. Mol. Biol. 1996, 259, 512–523.CrossRefGoogle Scholar
  17. 17.
    Uversky, V. N.; Narizhneva, N. V.; Kirschstein, S. O.; Winter, S.; Lober, G. S. O. Folding Design 1997, 2, 163–172.CrossRefGoogle Scholar
  18. 18.
    Kamarati, Y. O.; Ohji, S.; Konno, T.; Seki, Y.; Soda, K.; Kataoka, M.; Akasaka, K. Protein Sci. 1999, 8, 873–882.Google Scholar
  19. 19.
    Wagner, D. S.; Anderegg, R. J. Anal. Chem. 1994, 66, 706–711.CrossRefGoogle Scholar
  20. 20.
    Konermann, L.; Douglas, D. J. Biochemistry 1997, 36, 12296–12302.CrossRefGoogle Scholar
  21. 21.
    Konermann, L.; Douglas, D. J. Rapid Commun. Mass Spectrom. 1998, 12, 435–442.CrossRefGoogle Scholar
  22. 22.
    Wang, F.; Tang, X. Biochemistry 1996, 35, 4069–4078.CrossRefGoogle Scholar
  23. 23.
    Figueroa, I. D.; Russell, D. H. J. Am. Soc. Mass Spectrom. 1999, 10, 719–731.CrossRefGoogle Scholar
  24. 24.
    Loo, J. A. Bioconjugate Chem. 1995, 6, 644–665.CrossRefGoogle Scholar
  25. 25.
    Przybylski, M.; Glocker, M. O. Angew. Chem. Int. Ed. Engl. 1996, 53, 806–826.CrossRefGoogle Scholar
  26. 26.
    Chowdhury, S. K.; Katta, V.; Chait, B. T. J. Am. Chem. Soc. 1990, 112, 9012–9013.CrossRefGoogle Scholar
  27. 27.
    Le Blanc, J. C. Y.; Beauchemin, D.; Siu, K. W. M.; Guevremont, R.; Berman, S. S. Org. Mass Spectrom. 1991, 26, 831–839.CrossRefGoogle Scholar
  28. 28.
    Johnson, R. S.; Walsh, K. A. Protein Sci. 1994, 3, 2411–2418.CrossRefGoogle Scholar
  29. 29.
    Mirza, U. A.; Cohen, S. L.; Chait, B. T. Int. J. Mass. Spectrom. Ion Processes 1997, 162, 173–181.CrossRefGoogle Scholar
  30. 30.
    Katta, V.; Chait, B. T. J. Am. Chem. Soc. 1991, 113, 8534–8535.CrossRefGoogle Scholar
  31. 31.
    Loo, J. A.; Edmonds, C. G.; Udseh, H. R.; Smith, R. D. Anal. Chem. 1990, 62, 693–698.CrossRefGoogle Scholar
  32. 32.
    Konermann, L.; Rosell, F. I.; Mauk, A. G.; Douglas, D. J. Biochemistry 1997, 36, 6448–6454.CrossRefGoogle Scholar
  33. 33.
    Sogbein, O. O.; Simmons, D. A.; Konermann, L. J. Am. Soc. Mass Spectrom. 2000, 11, 312–319.CrossRefGoogle Scholar
  34. 34.
    Konermann, L.; Collings, B. A.; Douglas, D. J. Biochemistry 1997, 36, 5554–5559.CrossRefGoogle Scholar
  35. 35.
    Mendieta, J.; Folque, H.; Tauler, R. Biophys. J. 1999, 76, 451–457.CrossRefGoogle Scholar
  36. 36.
    Barteri, M.; Gaudiano, M. C.; Mei, G.; Rosato, N. Biochim. Biophys. Acta 1998, 1383, 317–326.CrossRefGoogle Scholar
  37. 37.
    Wilkinson, K. D.; Mayer, A. N. Arch. Biochem. Biophys. 1986, 250, 390–399.CrossRefGoogle Scholar
  38. 38.
    Pan, Y.; Briggs, M. S. Biochemistry 1992, 31, 11405–11412.CrossRefGoogle Scholar
  39. 39.
    Forge, V.; Hoshino, M.; Kuwata, K.; Arai, M.; Kuwajima, K.; Batt, C. A.; Goto, Y. J. Mol. Biol. 2000, 296, 1039–1051.CrossRefGoogle Scholar
  40. 40.
    Glasoe, P. K.; Long, F. A. J. Phys. Chem. 1960, 64, 188–190.CrossRefGoogle Scholar
  41. 41.
    Miranker, A. D.; Robinson, C. V.; Radford, S. E.; Dobson, C. M. FASEB J. 1996, 10, 93–101.Google Scholar
  42. 42.
    Englander, S. W.; Mayne, L. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 243–265.CrossRefGoogle Scholar
  43. 43.
    Woodward, C.; Simon, I.; Tuuchsen, E. Mol. Cell. Biochem. 1982, 48, 135–160.CrossRefGoogle Scholar
  44. 44.
    Englander, S. W.; Kallenbach, N. R. Q. Rev. Biophys. 1983, 16, 521–655.CrossRefGoogle Scholar
  45. 45.
    Miranker, A. D.; Robinson, C. V.; Radford, S. E.; Aplin, R. T.; Dobson, C. M. Science 1993, 262, 896–899.CrossRefGoogle Scholar
  46. 46.
    Zhang, Z.; Smith, D. L. Protein Sci. 1993, 2, 522–531.CrossRefGoogle Scholar
  47. 47.
    Chung, E. W.; Nettleton, E. J.; Morgan, C. J.; Gross, M.; Miranker, A.; Radford, S. E.; Dobson, C. M.; Robinson, C. V. Protein Sci. 1997, 6, 1316–1324.CrossRefGoogle Scholar
  48. 48.
    Engen, J. R.; Smithgall, T. E.; Gmeiner, W. H.; Smith, D. L. J. Mol. Biol. 1999, 287, 645–656.CrossRefGoogle Scholar
  49. 49.
    Englander, J. J.; Rogero, J. R.; Englander, S. W. Anal. Biochem. 1985, 147, 234–244.CrossRefGoogle Scholar
  50. 50.
    Bouchard, M.; Benjamin, D. R.; Tito, P.; Robinson, C. V.; Dobson, C. M. Biophys. J. 2000, 78, 1010–1017.CrossRefGoogle Scholar
  51. 51.
    Chen, Y.-H.; Yang, J. T.; Chau, K. H. Biochemistry 1974, 13, 3350–3359.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2001

Authors and Affiliations

  • Kodali Ravindra Babu
    • 1
  • Annie Moradian
    • 1
  • D. J. Douglas
    • 1
  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations