Noncovalent associations of glutathione S-transferase and ligands: A study using electrospray quadrupole/time-of-flight mass spectrometry

  • Masaki Ishigai
  • James I. Langridge
  • Robert S. Bordoli
  • Simon J. Gaskell


Human glutathione S-transferase A1-1 was observed predominantly as dimeric ions (51 kDa) during electrospray mass spectrometric analysis from aqueous solution at pH 7.4, in keeping with the known dimeric structure in solution. When analyses were performed on solutions of the enzyme containing glutathione (GSH), noncovalent adducts of protein dimer and one or two ligand molecules were observed; each mass increment, which exceeded the mass of GSH alone, was provisionally interpreted to indicate concomitant association of two water molecules per bound GSH. Noncovalent adducts of ligand and protein dimer were similarly observed for oxidized glutathione and for two glutathione inhibitors, both incorporating substituted thiol structures. In these instances, the mass increments exactly matched the ligand masses, suggesting that the apparent concomitant binding of water was associated with the presence in the ligand of a free thiol group. Collisionally activated decomposition during tandem mass spectrometry analyses of noncovalent adducts incorporating protein dimer and ligands yielded initially the denuded dimer; at higher collision energies the monomer and a protein fragment were formed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, R. D.; Light-Wahl, K. J. The observation of non-covalent interactions in solution by electrospray ionization mass spectrometry: Promise, pitfalls and prognosis. Biol. Mass Spectrom. 1993, 22, 493–501.CrossRefGoogle Scholar
  2. 2.
    Smith, D. L.; Zhang, Z. Probing noncovalent structural features of proteins by mass spectrometry. Mass Spectrom. Rev. 1994, 13, 411–429.CrossRefGoogle Scholar
  3. 3.
    Przybylski, M.; Glocker, M. O. Electrospray mass spectrometry of biomacromolecular complexes with non-covalent interactions—new analytical perspectives for supramolecular chemistry and molecular recognition processes. Angew. Chem. Int. Ed. Engl. 1996, 35, 806–826.CrossRefGoogle Scholar
  4. 4.
    Smith, R. D.; Bruce, J. E.; Wu, Q. Y.; Lei, Q. P. New mass spectrometric methods for the study of noncovalent associations of biopolymers. Chem. Soc. Rev. 1997, 26, 191–202.CrossRefGoogle Scholar
  5. 5.
    Loo, J. A. Studying non-covalent complexes by electrospray ionization mass spectrometry. Mass Spec. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  6. 6.
    Suckau, D.; Shi, Y.; Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. M., III; McLafferty, F. W. Coexisting stable conformations of gaseous protein ions. Proc. Natl. Acad. Sci. USA 1993, 90, 790–793.CrossRefGoogle Scholar
  7. 7.
    Feng, R.; Konishi, Y. Stepwise refolding of acid-denatured myoglobin: evidence from electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 1993, 4, 638–645.CrossRefGoogle Scholar
  8. 8.
    Benjamin, D. R.; Robinson, C. V.; Hendrick, J. P.; Hartl, F. U.; Dobson, C. M. Mass spectrometry of ribosomes and ribosomal subunits. Proc. Natl. Acad. Sci. USA 1998, 95, 7391–7395.CrossRefGoogle Scholar
  9. 9.
    Fitzgerald, M. C.; Chernushevich, I.; Standing, K. G.; Whitman, C. P.; Kent, S. B. H. Probing the oligomeric structure of an enzyme by electrospray ionization time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. USA 1996, 93, 6851–6856.CrossRefGoogle Scholar
  10. 10.
    Loo, J. A.; Ogorzalek Loo, R. R.; Andrews, P. C. Primary to quaternary protein structure determination with electrospray ionization and magnetic sector mass spectrometry. Org. Mass Spectrom. 1993, 28, 1640–1649.CrossRefGoogle Scholar
  11. 11.
    Murayama, K.; Taka, H.; Kaga, N.; Fujimura, T.; Mineki, R.; Shindo, N.; Morita, M.; Hosono, M.; Nitta, K. The structure of Silurus asotus (catfish) roe lectin (SAL): Identification of a noncovalent trimer by mass spectrometry and analytical ultracentrifugation. Anal. Biochem. 1997, 247, 319–326.CrossRefGoogle Scholar
  12. 12.
    Rostom, A. A.; Robinson, C. V. Disassembly of intact multi-protein complexes in the gas phase. Curr. Opin. Struct. Biol. 1999, 9, 135–141.CrossRefGoogle Scholar
  13. 13.
    Vis, H.; Dobson, C. M.; Robinson, C. V. Selective association of protein molecules followed by mass spectrometry. Protein Sci. 1999, 8, 1368–1370.CrossRefGoogle Scholar
  14. 14.
    Ganem, B.; Li, Y.-T.; Henion, J. D. Observation of noncovalent enzyme-substrate and enzyme-product complexes by ionspray mass spectrometry. J. Am. Chem. Soc. 1991, 113, 7818–7819.CrossRefGoogle Scholar
  15. 15.
    Feng, R.; Castelhano, A. L.; Billedeau, R.; Yuan, Z. Study of noncovalent enzyme-inhibitor complexes and metal binding stoichiometry of matrilysin by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 1105–1111.CrossRefGoogle Scholar
  16. 16.
    Ganem, B.; Li, Y.-T.; Henion, J. D. Detection of noncovalent receptor-ligand complexes by mass spectrometry. J. Am. Chem. Soc. 1991, 113, 6294–6296.CrossRefGoogle Scholar
  17. 17.
    Mannervik, B.; Danielson, U. H. Glutathione transferase— structure and catalytic activity. CRC Crit. Rev. Biochem. 1988, 23, 283–337.CrossRefGoogle Scholar
  18. 18.
    Coles, B.; Ketterer, B. The role of glutathione and glutathione transferases in chemical carcinogenesis. CRC Crit. Rev. Biochem. 1990, 25, 47–70.CrossRefGoogle Scholar
  19. 19.
    Armstrong, R. N. Glutathione S-transferase—structure and mechanism of an archetypical detoxication enzyme. Adv. Enzymol. Relat. Areas Mol. Biol. 1994, 69, 1–44.Google Scholar
  20. 20.
    Dirr, H.; Reinemer, P.; Huber, R. X-ray crystal structures of cytosolic glutathione S-transferase: implications for protein architecture, substrate recognition and catalytic function. Eur. J. Biochem. 1994, 220, 645–661.CrossRefGoogle Scholar
  21. 21.
    Mannervik, B. The isozymes of glutathione transferase. Adv. Enzymol. Relat. Areas Mol. Biol. 1985, 57, 357–417.Google Scholar
  22. 22.
    van Ommen, B.; Bogaards, J. J.; Peters, W. H.; Blaauboer, B.; Van Bladeren, P. J. Quantification of human hepatic glutathione S-transferases. Biochem. J. 1990, 269, 609–613.Google Scholar
  23. 23.
    Sinning, I.; Kleywegt, G. J.; Cowan, S. W.; Reinemer, P.; Dirr, H. W.; Huber, R.; Gilliand, G. L.; Armstrong, R. N.; Ji, X.; Board, P. G.; Olin, B.; Mannervik, B.; Jones, T. A. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the mu and pi class enzymes. J. Mol. Biol. 1993, 232, 192–212.CrossRefGoogle Scholar
  24. 24.
    Camereon, A. D.; Sinning, I.; L’Hermite, G.; Olin, B.; Board, P. G.; Mannervik, B.; Jones, T. A. Structural analysis of human alpha-class glutathione transferase A1-1 ion the apo-form and in complexes with ethacrynic acid and its glutathione conjugate. Structure 1995, 3, 717–727.CrossRefGoogle Scholar
  25. 25.
    Widersten, M.; Bjornestedt, R.; Mannervik, B. Contribution of amino acid residue-208 in the hydrophobic binding site to the catalytic mechanism of human glutathione transferase A1-1. Biochemistry 1994, 33, 11717–11723.CrossRefGoogle Scholar
  26. 26.
    Widersten, M.; Bjornestedt, R.; Mannervik, B. Involvement of the carboxyl groups of glutathione in the catalytic mechanism of human glutathione transferase A1-1. Biochemistry 1996, 35, 7731–7742.CrossRefGoogle Scholar
  27. 27.
    Hansson, L. O.; Widersten, M.; Mannervik, B. Mechanism-based phage display selection of active-site mutants of human glutathione transferase A1—a catalyzing SNAR reactions. Biochemistry 1997, 36, 11252–11260.CrossRefGoogle Scholar
  28. 28.
    Cooke, R. J.; Bjornestedt, R.; Douglas, K. T.; McKie, J. H.; King, M. D.; Coles, B.; Ketterer, B.; Mannervik, B. Photoaffinity labelling of the active site of the rat glutathione transferases 3-3 and 1-1 and human glutathione transferase A1-1. Biochem. J. 1994, 302, 383–390.Google Scholar
  29. 29.
    Ferrige, A. G.; Seddon, M. J.; Green, B. N.; Jarvis, S. A.; Skilling, J. Disentangling electrospray spectra with maximum entropy. Rapid Commun. Mass Spectrom. 1992, 6, 707–711.CrossRefGoogle Scholar
  30. 30.
    Tu, C. P. D.; Qian, B. Human liver glutathione S-transferases: complete primary sequence of an Ha subunit cDNA. Biochem. Biophys. Res. Commun. 1986, 141, 229–237.CrossRefGoogle Scholar
  31. 31.
    Xiao, G.; Liu, S.; Ji, X.; Johnson, W. W.; Chen, J.; Parsons, J. F.; Stevens, W. J.; Gilliland, G. L.; Armstrong, R. N. First-sphere and second-sphere electrostatic effects in the active site of a class mu glutathione transferase. Biochemistry 1996, 35, 4753–4765.CrossRefGoogle Scholar
  32. 32.
    Ji, X.; Zhang, P.; Armstrong, R. N.; Gilliland, G. L. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isozyme 3-3 and glutathione at 2.2A resolution. Biochemistry 1992, 31, 10169–10184.CrossRefGoogle Scholar
  33. 33.
    Dietze, E. C.; Wang, R. W.; Lu, A. Y.; Atkins, W. M. Ligand effects on the fluorescence properties of tyrosine-9 in alpha 1-1 glutathione S-transferase. Biochemistry 1996, 35, 6745–6753.CrossRefGoogle Scholar
  34. 34.
    Atkins, W. M.; Dietze, E. C.; Ibarra, C. Pressure-dependent ionization of Tyr-9 in glutathione S-transferase A1-1: contribution of the C-terminal helix to a “soft” active site. Protein Sci. 1997, 6, 873–881.CrossRefGoogle Scholar
  35. 35.
    Fabris, D.; Fenselau, C. Analyt. Chem. 1999, 71, 384–387.CrossRefGoogle Scholar
  36. 36.
    Chung, E.; Henriques, D.; Renzoni, D.; Zvelebil, M.; Bradshaw, J. M.; Waksman, G.; Robinson, C. V.; Ladbury, J. E. Mass spectrometric and thermodynamic studies reveal the role of water molecules in complexes formed between SH2 domains and tyrosyl phosphopeptides. Structure 1998, 6, 1141–1151.CrossRefGoogle Scholar
  37. 37.
    Loo, J. A.; Edmonds, C. G.; Smith, R. D. Tandem mass spectrometry of very large molecules. 2. Dissociation of multiply charged proline-containing proteins from electrospray ionization. Anal. Chem. 1993, 65, 425–438.CrossRefGoogle Scholar
  38. 38.
    Senko, M. W.; Beu, S. C.; McLafferty, F. W. High-resolution tandem mass spectrometry of carbonic anhydrase. Anal. Chem. 1994, 66, 415–417.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2000

Authors and Affiliations

  • Masaki Ishigai
    • 1
    • 3
  • James I. Langridge
    • 2
  • Robert S. Bordoli
    • 2
  • Simon J. Gaskell
    • 1
  1. 1.Michael Barber Centre for Mass SpectrometryUMISTManchesterUK
  2. 2.Micromass UK Ltd.ManchesterUK
  3. 3.Fuji Gotenba Research LabChugai Pharmaceutical Co. Ltd.ShizuokaJapan

Personalised recommendations