Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides

Article

Abstract

Aqueous ozonation of the 22 most common amino acids and some small peptides were studied by electrospray mass (ESI-MS) and tandem mass spectrometry. After 5 min of ozonation only His, Met, Trp, and Tyr form oxidation products clearly detectable by ESI-MS. For His, the main oxidation product is formed by the addition of three oxygen atoms, His + 3O; for Met and Tyr by the addition of one oxygen atom, Met + O and Tyr + O, and for Trp by the addition of two oxygen atoms, Trp + 2O. Ozone oxidation occurs rapidly, products are already detected after 30 s of ozonation, and the reactivity order is Met > Trp > Tyr > His. The structures of the oxygen addition products were investigated by electrospray product ion mass spectra, and by comparing these spectra to those of protonated intact amino acids, and when available, to those of model compounds. His + 3O was assigned as 2-amino-4-oxo-4-(3-formylureido)butanoic acid (1) formed by oxidation of the His imidazole ring, Met + O as methionine sulfoxide (2), Trp + 2O as N-formylkynurenine (4), and Tyr + O as a mixture of dihydroxyphenylalanines (7 and 8). Ozonation of peptides show that the same number of oxygen atoms are added as expected from the ozonation of the free amino acids. The product ion mass spectra of both the protonated intact peptides, MH+, and the main ozonation products (M + nO)H+ (n = 1–3) revealed b and y type ions as the main fragments, which allow one to assign the type and location of modified amino acid in the model peptides.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lefohn, A. S. Environ. Sci. Technol. 1997, 31, 280A.Google Scholar
  2. 2.
    McEwan, M. J.; Phillips, L. F. Chemistry of Atmosphere; Edward Arnold Ltd: London, 1975.Google Scholar
  3. 3.
    Atkinson, R. J. Phys. Chem. Ref Data 1994, Monograph 2.Google Scholar
  4. 4.
    The Oxidizing Capacity of the Troposphere, Proceedings of the Seventh European Symposium on Physico-chemical Behaviour of Atmospheric Pollutants; Larsen, B.; Versino, B., Angeletti, G., Eds., Report EUR 17482 EN, European Communities: Brussels, 1997.Google Scholar
  5. 5.
    Rice, R. G.; Bollyky, L. J.; Lacy, W. J. Analytical Aspects of Ozone Treatment of Water and Waste Water; Lewis Publishers: Chelsea, MI, 1986.Google Scholar
  6. 6.
    Pirie, A. Biochem. J. 1971, 125, 203.Google Scholar
  7. 7.
    Chang, K. C.; Marshall, H. F.; Satterlee, L. D. J. Food Sci. 1982, 47, 1181.CrossRefGoogle Scholar
  8. 8.
    Ohgami, Y.; Nagase, M.; Nabeshima, S.; Fukui, M.; Nakazawa, H. J. Biotechnol. 1989, 12, 219.CrossRefGoogle Scholar
  9. 9.
    Kell, G.; Steinhart, H. J. Food Sci. 1990, 55, 1120.CrossRefGoogle Scholar
  10. 10.
    Takemoto, L.; Horwitz, J.; Emmons, T. Curr. Eye Res. 1992, 11, 651.CrossRefGoogle Scholar
  11. 11.
    Lamthanh, H.; Deprun, C.; Le Beyec, Y. Rapid Commun. Mass Spectrom. 1994, 8, 971.CrossRefGoogle Scholar
  12. 12.
    Manneberg, M.; Lahm, H.-W.; Fountoulakis, M. Anal. Biochem. 1995, 224, 122.CrossRefGoogle Scholar
  13. 13.
    Dillen, L.; Zhang, X. Y.; Claeys, M.; Liang, F.; De Potter, W. P.; Van Dongen, W.; Esmas, E. L. J. Mass Spectrom. 1995, 30, 1599.CrossRefGoogle Scholar
  14. 14.
    van de Weert, M.; Lagerwerf, F. M.; Haverkamp, J.; Heerma, W. J. Mass Spectrom. 1998, 33, 884.CrossRefGoogle Scholar
  15. 15.
    Mudd, J. B.; Leavitt, R.; Ongun, A.; McManus, T. T. Atmos. Environ. 1969, 3, 669.CrossRefGoogle Scholar
  16. 16.
    Meiners, B. A.; Peters, R. E.; Mudd, J. B. Environ. Res. 1977, 14, 99.CrossRefGoogle Scholar
  17. 17.
    Leh, F.; Warr, T. A.; Mudd, J. B. Environ. Res. 1978, 16, 179.CrossRefGoogle Scholar
  18. 18.
    Verweij, H.; Christianse, K.; van Steveninck, J. Chemosphere 1982, 11, 721.CrossRefGoogle Scholar
  19. 19.
    Hoigné, J.; Bader, H. Water Res. 1983, 17, 185.CrossRefGoogle Scholar
  20. 20.
    Pryor, W. A.; Giamalva, D. H.; Church, D. F. J. Am. Chem. Soc. 1984, 106, 7094.CrossRefGoogle Scholar
  21. 21.
    Kuroda, M.; Sakiyama, F.; Narita, K. J. Biochem. 1975, 78, 641.Google Scholar
  22. 22.
    Freeman, B. A.; Mudd, J. B. Arch. Biochem. Biophys. 1981, 208, 212.CrossRefGoogle Scholar
  23. 23.
    Verweij, H.; Christianse, K.; van Steveninck, J. Biochim. Biophys. Acta 1982, 701, 180.CrossRefGoogle Scholar
  24. 24.
    Dooley, M. M.; Mudd, J. B. Arch. Biochem. Biophys. 1982, 218, 459.CrossRefGoogle Scholar
  25. 25.
    Knight, K. L.; Mudd, J. B. Arch. Biochem. Biophys. 1984, 229, 259.CrossRefGoogle Scholar
  26. 26.
    Smith, C. E.; Stack, M. S.; Johnson, D. A. Arch. Biochem. Biophys. 1987, 253, 146.CrossRefGoogle Scholar
  27. 27.
    Banerjee, S. K.; Mudd, J. B. Arch. Biochem. Biophys. 1992, 295, 84.CrossRefGoogle Scholar
  28. 28.
    Berlett, B. S.; Levine, R. L.; Stadtman, E. R. J. Biol. Chem. 1996, 271, 4177.CrossRefGoogle Scholar
  29. 29.
    Mudd, J. B.; Dawson, P. J.; Tseng, S.; Liu, F.-P. Arch. Biochem. Biophys. 1997, 338, 143.CrossRefGoogle Scholar
  30. 30.
    Electrospray Ionization Mass Spectrometry, Fundamentals Instrumentation & Applications; Cole, R. B., Ed., Wiley: New York, 1997.Google Scholar
  31. 31.
    Cotter, R. J. Time-of-Flight Mass Spectrometry, Instrumentation and Applications in Biological Research; American Chemical Society: Washington, DC, 1997.Google Scholar
  32. 32.
    Nukuna, B. N.; Anderson, V. Use of 16 O:18 O Mixtures to Identify Peptide Oxidation Products by ESI-MS/MS; Proceedings of the 47th ASMS Conference on Mass Spectrometry and Allied Topics; Dallas, TX, June 13–17, 1999.Google Scholar
  33. 33.
    Schnölzer, M.; Rackwitz, H.-R. Identification of Methionine Oxidation in Proteins by MALDI Mass Spectrometry; Proceedings of the 47th ASMS Conference on Mass Spectrometry and Allied Topics; Dallas, TX, June 13–17, 1999.Google Scholar
  34. 34.
    Bouchon, B.; Jaquinod, M.; Klarskov, K.; Trottein, F.; Klein, M.; Van Dorsselaer, A.; Bischoff, R.; Roitsch, C. J. Chromatogr. B 1994, 662, 279.CrossRefGoogle Scholar
  35. 35.
    Chowdhury, S. K.; Eshraghi, J.; Wolfe, H.; Forde, D.; Hlavac, A. G.; Johnston, D. Anal. Chem. 1995, 67, 390.CrossRefGoogle Scholar
  36. 36.
    DeGnore, J. P.; König, S.; Barrett, W. C.; Chock, P. B.; Fales, H. M. Rapid Commun. Mass Spectrom. 1998, 12, 1457.CrossRefGoogle Scholar
  37. 37.
    Bateman, K. P. J. Am. Soc. Mass Spectrom. 1999, 10, 309.CrossRefGoogle Scholar
  38. 38.
    Morand, K.; Talbo, G.; Mann, M. Rapid Commun. Mass Spectrom. 1993, 7, 738.CrossRefGoogle Scholar
  39. 39.
    Maleknia, S. D.; Brenowitz, M.; Chance, M. R. Anal. Chem. 1999, 71, 3965.CrossRefGoogle Scholar
  40. 40.
    Deutsch, J. C.; Santhosh-Kumar, C. R.; Kolhouse, J. F. J. Chromatogr. A 1999, 862, 161.CrossRefGoogle Scholar
  41. 41.
    Maleknia, S. D.; Chance, M. R.; Downard, K. M. Rapid Commun. Mass Spectrom. 1999, 13, 2352.CrossRefGoogle Scholar
  42. 42.
    Wagner, R. M.; Fraser, B. A. Biomed. Environ. Mass Spectrom. 1987, 14, 69.CrossRefGoogle Scholar
  43. 43.
    Sun, Y.; Smith, D. L. Anal. Biochem. 1988, 172, 130.CrossRefGoogle Scholar
  44. 44.
    Burlet, O.; Yang, C.-Y.; Gaskell, S. J. J. Am. Soc. Mass Spectrom. 1992, 3, 337.CrossRefGoogle Scholar
  45. 45.
    Lagerwerf, F. M.; van de Weert, M.; Heerma, W.; Haverkamp, J. Rapid Commun. Mass Spectrom. 1996, 10, 1905.CrossRefGoogle Scholar
  46. 46.
    Kruppa, G.; Van Orden; S., Speir, P.; Wronka, J.; Laukien, F.; Siegel, M. Strategies of Internal Calibration of Msn Spectra for Accurate Mass Determination of Fragment Ions Using FTMS; Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics; Orlando, FL, 1998.Google Scholar
  47. 47.
    Tutko, D. C.; Henry, K. D.; Winger, B. E.; Stout, H.; Hemling, M. Rapid Commun. Mass Spectrom. 1998, 12, 335.CrossRefGoogle Scholar
  48. 48.
    Wu, Q. Anal. Chem. 1998, 70, 865.CrossRefGoogle Scholar
  49. 49.
    Kulik, W.; Heerma, W. Biomed. Environ. Mass Spectrom. 1988, 15, 419.CrossRefGoogle Scholar
  50. 50.
    Dookeran, N. N.; Yalcin, T.; Harrison, A. G. J. Mass Spectrom. 1996, 31, 500.CrossRefGoogle Scholar
  51. 51.
    Uchida, K.; Kawakishi, S. Bioorg. Chem. 1989, 17, 330.CrossRefGoogle Scholar
  52. 52.
    Depke, G.; Heinrich, N.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1984, 62, 99.CrossRefGoogle Scholar
  53. 53.
    Savige, W. E.; Fontana, A. Methods Enzymol. 1977, 47, 442.CrossRefGoogle Scholar
  54. 54.
    Nguyen, N. T.; Wrona, M. Z.; Dryhurst, G. J. Electroanal. Chem. 1986, 199, 101.CrossRefGoogle Scholar
  55. 55.
    Bond, A. M.; Tucker, D. J.; Qing, Z.; Rivett, D. E. J. Electroanal. Chem. 1991, 315, 125.CrossRefGoogle Scholar
  56. 56.
    Langlois, R.; Ali, H.; van Lier, J. E. J. Chim. Phys. 1993, 90, 985.Google Scholar
  57. 57.
    Pryor, W. A.; Uppu, R. M. J. Biol. Chem. 1993, 268, 3120.Google Scholar
  58. 58.
    Simat, T.; Meyer, K.; Steinhart, H. J. Chromatogr. A 1994, 661, 93.CrossRefGoogle Scholar
  59. 59.
    Biemann, K. Biomed. Environ. Mass Spectrom. 1988, 16, 99.CrossRefGoogle Scholar
  60. 60.
    Roepstorff, P.; Fohlman, J. Biomed. Mass Spectrom. 1984, 11, 601.CrossRefGoogle Scholar
  61. 61.
    Siuzdak, G. Mass Spectrometry for Biotechnology; Academic: San Diego, CA, 1996.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2000

Authors and Affiliations

  1. 1.VTT Chemical TechnologyVTTFinland
  2. 2.Institute of ChemistryState University of Campinas-UNICAMPCampinasBrazil
  3. 3.Department of ChemistryUniversity of JoensuuJoensuuFinland
  4. 4.Department of Pharmacy, Division of Pharmaceutical ChemistryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations