Advertisement

Journal of Iron and Steel Research International

, Volume 23, Issue 2, pp 178–184 | Cite as

Constitutive Modeling for Flow Behaviors of Superaustenitic Stainless Steel S32654 during Hot Deformation

  • En-xiang PuEmail author
  • Han Feng
  • Min Liu
  • Wen-jie ZhengEmail author
  • Han Dong
  • Zhi-gang Song
Material

Abstract

Hot deformation behavior of superaustenitic stainless steel S32654 was investigated with hot compression tests at temperatures of 950 – 1250 °C and strain rates of 0. 001 –10 s−1. Above 1150 °C, with strain rate lower than 0. 1 s−1 the flow curves exhibit nearly steady-state behavior, while at higher strain rate, continuous flow softening occurs. To provide a precise prediction of flow behavior for the alloy, the constitutive modeling considering effect of strain was derived on the basis of the obtained experimental data and constitutive relationship which incorporated Arrhenius term and hyperbolic-sine type equation. The material constants a, n, Q and InA are found to be functions of the strain and can be fitted employing eighth-order polynomial. The developed constitutive model can be employed to describe the deformation behavior of superaustenitic stainless steel S32654.

Key words

S32654 superaustenitic stainless steel hot deformation constitutive modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Olsson, W. Wasielewska, Mater. Corros. 48 (1997) 791–798.CrossRefGoogle Scholar
  2. [2]
    Y. Liu, R. Hu, J. S. Li, H. C. Kou, H. G. Li, Mater. Sci. Eng. A 508 (2009) 141–147.CrossRefGoogle Scholar
  3. [3]
    S. Heino, M. Knutson-wedel, B. Karlsson, Mater. Sci. Forum 318–320 (1999) 143–150.CrossRefGoogle Scholar
  4. [4]
    G. Mori, D. Bauernfeind, Mater. Corros. 55 (2004) 164–173.CrossRefGoogle Scholar
  5. [5]
    E. X. Pu, W. J. Zheng, J. Z. Xiang, Z. G. Song, J. Li, Mater. Sci. Eng. A 598 (2014) 174–182.CrossRefGoogle Scholar
  6. [6]
    E. X. Pu, W. J. Zheng, J. Z. Xiang, Z. G. Song, H. Feng, Y. L. Zhu, Acta Metall. Sin. (Engl. Lett.) 27 (2014) 313–323.CrossRefGoogle Scholar
  7. [7]
    Y. H. Xiao, C. Guo, X. Y. Guo, Mater. Sci. Eng. A 528 (2011) 6510–6518.CrossRefGoogle Scholar
  8. [8]
    F. Yin, L. Hua, H. J. Mao, X. H. Han, Mater. Des. 43 (2013) 393–401.CrossRefGoogle Scholar
  9. [9]
    H. Mirzadeh, J. M. Cabrera, A. Najafizadeh, Acta Mater. 59 (2011) 6441–6448.CrossRefGoogle Scholar
  10. [10]
    Z. J. Pu, K. H. Wu, J. Shi, D. Zou, Mater. Sci. Eng. A 192/193 (1995) 780–787.CrossRefGoogle Scholar
  11. [11]
    Y. C. Lin, D. X. Wen, J. Deng, G. Liu, J. Chen, Mater. Des. 59 (2014) 115–123.CrossRefGoogle Scholar
  12. [12]
    Q. C. Fan, X. Q. Jiang, Z. H. Zhou, W. Ji, H. Q. Cao, Mater. Des. 65 (2015) 193–203.CrossRefGoogle Scholar
  13. [13]
    Y. Han, G. J. Qiao, Y. Sun, D. N. Zou, Mater. Sci. Eng. A 539 (2012) 61–67.CrossRefGoogle Scholar
  14. [14]
    E. X. Pu, W. J. Zheng, Z. G. Song, J. Z. Xiang, X. P. Wei, J. Iron Steel Res. Int 21 (2014) 975–982.CrossRefGoogle Scholar
  15. [15]
    D. Samantaray, S. Mandai, A. K. Bhaduri, Mater. Des. 31 (2010) 981–984.CrossRefGoogle Scholar
  16. [16]
    F. Chen, F. C. Ren, Z. S. Cui, X. M. Lai, J. Iron Steel Res. Int. 21 (2014) 521–526.CrossRefGoogle Scholar
  17. [17]
    C. L. Gan, Y. D. Xue, M. J. Wang, Mater. Sci. Eng. A 528 (2011) 4199–4203.CrossRefGoogle Scholar
  18. [18]
    F. C. Ren, J. Chen, J. Iron Steel Res. Int. 20 (2013) No. 11, 118–124.CrossRefGoogle Scholar
  19. [19]
    Y. Wang, W. Z. Shao, L. Zhen, L. Yang, X. M. Zhang, Mater. Sci. Eng. A 497 (2008) 479–486.CrossRefGoogle Scholar
  20. [20]
    E. I. Poliak, J. J. Jonas, ISIJ. Int. 43 (2003) 684–691.CrossRefGoogle Scholar
  21. [21]
    C. M. Sellars, W. J. MeG. Tegart, Int. Metall. Rev. 17 (1972) 1–24.CrossRefGoogle Scholar
  22. [22]
    M. J. Zhang, F. G. Li, S. Y. Wang, C. Y. Liu, Mater. Sci. Eng. A 527 (2010) 6771–6779.CrossRefGoogle Scholar
  23. [23]
    Q. L. Yong, Secondary Phases in Steels, Metallurgical Industry Press, Beijing, 2006.Google Scholar
  24. [24]
    W. F. Smith, J. Hashemi, Foundations of Materials Science and Engineering, China Machine Press, Beijing, 2011.Google Scholar
  25. [25]
    L. Wang, F. Liu, J. J. Cheng, Q. Zuo, C. F. Chen, J. Alloys Comp. 623 (2015) 69–78.CrossRefGoogle Scholar
  26. [26]
    M. EI Wahabi, J. M. Cabrera, J. M. Prado, Mater. Sci. Eng. A 343 (2003) 116–125.CrossRefGoogle Scholar
  27. [27]
    H. J. McQueen, Mater. Sci. Eng. A 101 (1988) 149–160.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2016

Authors and Affiliations

  1. 1.Central Iron and Steel Research InstituteBeijingChina
  2. 2.School of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations