Advertisement

Reduction of Pyrite Cinder Pelets Mixed with Coal Powder

  • Xiang-dong XingEmail author
  • Jian-liang Zhang
  • Zhen-yang Wang
  • Ke-xin Jiao
  • Xing-le Liu
  • Shan Ren
Article

Abstract

Direct reduction of pyrite cinder in a rotary hearth furnace (RHF) was studied under the condition of laboratory simulation. Effects of reduction temperature, reduction time, molar ratio of carbon to oxygen, and CaO addition on metallization rate as well as compressive strength of the pellets after reduction were discussed. The results showed that the metallization rate and compressive strength were 93.9% and 2160 N per pellet respectively under the conditions of the reduction temperature of 1200 °C, the reduction time of 16 min, and the molar ratio of carbon to oxygen (xc/xo) of 1.0; adding 2. 5 % CaO was beneficial to sulfur enrichment in slag phase of pellet, and metallization rate increased slightly while compressive strength decreased.

Keywords

pyrite cinder metallization rate compressive strength pellet coal powder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. H. Bai, X. Q. Zhou, Iron and Steel 44 (2009) No. 7, 7–12.Google Scholar
  2. [2]
    I. Alp, H. Deveci, E. Y. Yazici, T. Türk, Y. H. Süngün, J. Hazard. Mater. 166 (2009) 144–149CrossRefGoogle Scholar
  3. [3]
    G. Fellet, L. Marchiol, D. Perosa, G. Zerbi, Ecol. Eng. 31 (2007) 207–214.CrossRefGoogle Scholar
  4. [4]
    Q. J. Liu, X. L. Zhou, H. W. L. P. Zou, Yunnan Metall. 32 (2003) No. 2, 27–29.Google Scholar
  5. [5]
    B. S. Hu, H. Wang, Multipurp. Util. Miner. Resour. 23 (2002) No. 2, 16–18.Google Scholar
  6. [6]
    Y. J. Zheng, M. J. Chen, G. L. Huang, J. Gent. South Univ. Sci. Technol. 37 (2006) 252–256.Google Scholar
  7. [7]
    Z. J. Liu, X. D. Xing, J. L. Zhang, M. M. Cao, K. X. Jiao, S. Ren, Int. J. Miner. Metall. Mater. 19 (2012) 986–991.CrossRefGoogle Scholar
  8. [8]
    D. Q. Zhu, J. Li, Q. C. Li, J. Pan, X. F. Xu, Y. Zhai, Y. Y. Tang, Y. Gui, Chin. J. Nonlerrous Met. 17 (2007) 649–656.CrossRefGoogle Scholar
  9. [9]
    X. Zhang, J. L. Zhang, H. Guo, L. Bai, Mining and Metallurgical Engineering 29 (2009) No. 2, 55–62.Google Scholar
  10. [10]
    X. G. Huang, Principle of Ferrous Metallurgy, Metallurgical Industry Press, Beijing, 2010.Google Scholar
  11. [11]
    M. Xu, Z. X. Zhao, J. L. Zhang, L. T. Kong, T. J. Wan, J. Iron Steel Res. 19 (2007) No. 10, 11–16.Google Scholar
  12. [12]
    M. C. Bagatini, V. Zymla, E. Osorio, A. C. F. Vilela, ISIJ Int. 51 (2011) 1072–1080.CrossRefGoogle Scholar
  13. [13]
    X. M. Guo, S. B. Zhang, N. X. Fu, X. F. Zhao, J. Univ. Sci. Technol. Beijing 8 (2001) 185–192.Google Scholar
  14. [14]
    X. M. Yang, Y. S. Xie, D. G. Wang, D. B. Huang, L. T. Kong, T. J. Yang, J. Iron Steel Res. Int. 7 (2000) No. 2, 1–6.Google Scholar
  15. [15]
    Z. L. Xue, D. N. Zhao, D. Yang, C. Ke, G. J. Ma, F. Yang, Q. X. Wang, J. Univ. Sci. Technol. Beijing 32 (2010) 1532–1540.Google Scholar
  16. [16]
    L. H. Zhou, J. Mater. Sci. Eng. 28 (2010), 345–348.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2014

Authors and Affiliations

  • Xiang-dong Xing
    • 1
    • 2
    Email author
  • Jian-liang Zhang
    • 1
  • Zhen-yang Wang
    • 1
  • Ke-xin Jiao
    • 1
  • Xing-le Liu
    • 1
  • Shan Ren
    • 1
  1. 1.Colege of Metalurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Colege of Metalurgical EngineeringXi’an University of Architecture and TechnologyXi’an, ShaanxiChina

Personalised recommendations