Advertisement

Journal of Hydrodynamics

, Volume 29, Issue 5, pp 790–799 | Cite as

A 3-D numerical study of solitary wave interaction with vertical cylinders using a parallelised particle-in-cell solver

  • Qiang Chen
  • Jun ZangEmail author
  • David M. Kelly
  • Aggelos S. Dimakopoulos
Special Column on 32nd IWWWFB
  • 9 Downloads

Abstract

This paper aims to provide a better understanding of the interaction between solitary waves and vertical circular cylinders. This is achieved via process based numerical modelling using the parallel particle-in-cell based incompressible flow solver PICIN. The numerical model solves the Navier-Stokes equations for free-surface flows and incorporates a Cartesian cut cell method for fluid-structure interaction. Solitary waves are generated using a piston-type wave paddle. The PICIN model is first validated using a test case that involves solitary wave scattering by a single vertical cylinder. Comparisons between the present results and experimental data show good agreement for the free surface elevations around the cylinder and the horizontal wave force on the cylinder. The model is then employed to investigate solitary wave interaction with a group of eleven vertical cylinders. The wave run-up and wave forces on the cylinders are discussed.

Key words

CFD hybrid Eulerian-Lagrangian particle-in-cell solitary wave vertical cylinder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chen L., Sun L., Zang J. et al. Numerical study of roll motion of a 2-D floating structure in viscous flow [J]. Journal of Hydrodynamics, 2016, 28(4): 544–563.CrossRefGoogle Scholar
  2. [2]
    Rogers B. D., Dalrymple R. A., Stansby P. K. Simulation of caisson breakwater movement using 2-D SPH [J]. Journal of Hydraulic Research, 2010, 48: 135–141.CrossRefGoogle Scholar
  3. [3]
    Harlow F.H. The particle-in-cell computing method for fluid dynamics (Alder B. Methods in computational physics) [M]. New York, USA: Academic Press, 1964, 319–343.Google Scholar
  4. [4]
    Brackbill J. U., Ruppel H. M., FLIP: A method for adap-tively zoned, particle-in-cell calculations of fluid flows in two dimensions [J]. Journal of Computational physics, 1986, 65(2): 314–343.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Zhu Y. N., Bridson R. Animating sand as a fluid [J]. ACM Transactions on Graphics, 2005, 24(3): 965–972.CrossRefGoogle Scholar
  6. [6]
    Kelly D. M. Full particle PIC modelling of the surf and swash zones [C]. Proceedings 33rd International Conference on Coastal Engineering. Santander, Spain, 2012.Google Scholar
  7. [7]
    Kelly D.M., Chen Q., Zang J. PICIN: A particle-in-cell solver for incompressible free surface flows with two-way fluid-solid coupling [J]. SIAM Journal on Scientific Computing, 2015, 37(3): B403–B424.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Chen Q., Kelly D. M., Dimakopoulos A. S. et al. Validation of the PICIN solver for 2D coastal flows [J]. Coastal Engineering, 2016, 112: 87–98.CrossRefGoogle Scholar
  9. [9]
    Chen Q., Zang J., Dimakopoulos A. S. et al. A Cartesian cut cell based two-way strong fluid-solid coupling algorithm for 2D floating bodies [J]. Journal of Fluids and Structures, 2016, 62: 252–271.CrossRefGoogle Scholar
  10. [10]
    Chen Q., Zang J., Kelly D. M. et al. A 3D parallel Particle-in-cell solver for wave interaction with vertical cylinders [J]. Under Review by Ocean Engineering, Unpublished results.Google Scholar
  11. [11]
    Yates G. T., Wang K. H. Solitary wave scattering by a vertical cylinder: experimental study [C]. Proceedings of the Fourth (1994) International Offshore and Polar Engineering Conference. Osaka, Japan, 1994, 118–124.Google Scholar
  12. [12]
    Zhao M., Cheng L., Teng B. Numerical simulation of solitary wave scattering by a circular cylinder array [J]. Ocean Engineering, 2007, 34(3–4): 489–499.CrossRefGoogle Scholar
  13. [13]
    Ai C.F., Jin S. Non-hydrostatic finite volume model for non-linear waves interacting with structures [J]. Computers and Fluids, 2010, 39(10): 2090–2100.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Mo W. H., Liu P. L. F. Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders [J]. International Journal of Naval Architecture and Ocean Engineering, 2009, 1(1): 20–28.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Kagemoto H., Murai M., Fujii T. Second-order resonance among an array of two rows of vertical circular cylinders [J]. Applied Ocean Research, 2014, 47(2): 192–198.CrossRefGoogle Scholar
  16. [16]
    Harlow F.H., Welch J.E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface [J]. Physics of Fluids, 1965, 8(12): 2182–2189.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Chorin A. J. Numerical solution of the Navier-Stokes equations [J]. Mathematics of computation, 1968, 22: 745–762.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Gibou F., Fedkiw R. P., Cheng L. T. et al. A second-order-accurate symmetric discretization of the Poisson equation on irregular domains [J]. Journal of Computational Physics, 2002, 176(1): 205–227.MathSciNetCrossRefGoogle Scholar
  19. [19]
    Ng Y.T., Min C., Gibou F. An efficient fluid-solid coupling algorithm for single-phase flows [J]. Journal of Computational Physics, 2009, 228(23): 8807–8829.MathSciNetCrossRefGoogle Scholar
  20. [20]
    Edwards E., Bridson R. A high-order accurate particle-in-cell method [J]. International Journal for Numerical Methods in Engineering, 2012, 90(9): 1073–1088.MathSciNetCrossRefGoogle Scholar
  21. [21]
    Ralston A. Runge-Kutta methods with minimum error bounds [J]. Mathematics of computation, 1962, 16(80): 431–437.MathSciNetCrossRefGoogle Scholar
  22. [22]
    Chen Q. Development of a full particle PIC method for simulating nonlinear wave-structure interaction [D]. Doctoral Thesis, Bath, UK: University of Bath, 2017.Google Scholar
  23. [23]
    Wu N. J., Tsay T. K., Chen Y. Y. Generation of stable solity waves by a piston-type wave maker [J]. Wave Motion, 2014, 51(2): 240–255.MathSciNetCrossRefGoogle Scholar
  24. [24]
    Wu N. J., Hsiao S. C., Chen H. H. et al. The study on solitary waves generated by a piston-type wave maker [J]. Ocean Engineering, 2016, 117: 114–129.CrossRefGoogle Scholar
  25. [25]
    Goring D. G. Tsunamis–the propagation of long waves onto a shelf [D]. Doctoral Thesis, Pasadena, USA: California Institute of Technology, 1978.Google Scholar
  26. [26]
    Fenton J. A ninth-order solution for the solitary wave [J]. Journal of Fluid Mechanics, 1972, 53: 257–271.CrossRefGoogle Scholar
  27. [27]
    Cao H. J., Wan D. C. RANS-VOF solver for solitary wave run-up on a circular cylinder [J]. China Ocean Engineering, 2015, 29(2): 183–196.CrossRefGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2017

Authors and Affiliations

  • Qiang Chen
    • 1
  • Jun Zang
    • 1
    Email author
  • David M. Kelly
    • 2
  • Aggelos S. Dimakopoulos
    • 3
  1. 1.WEIR Research Unit, Department of Architecture and Civil EngineeringUniversity of BathBathUK
  2. 2.Coastal Research Laboratory, International Hurricane Research CenterFlorida International UniversityMiamiUSA
  3. 3.HR WallingfordWallingfordUK

Personalised recommendations